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a  b  s  t  r  a  c  t

Quantum  networks  are  distributed  many-body  quantum  systems  with  tailored  topology  and  controlled
information  exchange.  We  present  two schemes  to generate  remote  entanglement,  in  atomic  external
degrees  of  freedom  and between  cavities.  In the  first scheme,  we  entangle  two atoms  with  their  cavities
in  momentum  space  through  Bragg  diffraction.  Thereafter,  in order  to trace out  the  cavities,  we  let  res-
onantly  interact  an auxiliary  atom  with  each  cavity.  In the last, we  perform  quantum  measurement  on
two auxiliary  atoms  and  get remote  entangled  state  in  atomic  external  degrees  of  freedom.  In  the second
scheme,  we  have  a three  cavities  system.  The  other  two  cavities,  A  and  B, are  entangled  with  indistin-
guishable  modes  of  cavity,  C.  Performing  quantum  measurement  on  third  cavity,  C,  we  disentangle  it
from  the  system  and  the  cavities,  A  and  B, become  entangled.

©  2014  Published  by  Elsevier  GmbH.

1. Introduction

Entanglement [1,2], a non-local and quantum mechanical phe-
nomenon, has many applications in quantum information and
quantum computation [3,4]. Different schemes are proposed to
engineer different types of entanglement such as Bell state,
Noon state, Werner state, Cluster state, and graph state [5–8].
Entanglement engineering between two electromagnetic cavities,
multimodes of single cavity [9,10] and atomic internal [11–14] and
external degrees of freedom using Bragg diffraction regime [15]
are also suggested. Bragg diffraction of the atomic de Broglie waves
from cavity field [16,17] has many applications in quantum infor-
matics including quantum logic gates [18], atoms interferometer
[19] and quantum state measurement [20].

The remote entanglement for field and atomic state preparation
are also proposed [21]. Here, we suggest two techniques to develop
remote entanglement based on cavity quantum electrodynamics
(QED). In the first technique, we engineer remote entanglement in
the atomic external degrees of freedom using Bragg diffraction cav-
ity QED techniques [22,23]. For this purpose, we utilize two sets of
atoms, two atoms, T1 and T2, used to produce momentum entangled
state with cavities, called tagged atoms and other two, A1 and A2,
used to trace out cavities from system, called auxiliary atoms. First,
we interact two tagged atoms dispersively through cavities, A and B,
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which are in superposition state of zero and one photon. We  follow
dispersively interact the tagged atoms to avoid the spontaneous
emission which causes the emission of photon in any arbitrary
direction. After interaction we  entangle the atom in their momen-
tum states and cavity field [24]. Second, we resonantly interact the
auxiliary atoms, A1 and A2, in the ground states, |g1〉 and |g2〉, with
cavities, A and B, respectively. For interaction time corresponding
to, �, Rabi cycle, cavity state transfer to the atomic state and leave
the cavity in the vacuum state. During the interaction, when cav-
ity is in vacuum state then auxiliary atom remain in their ground
state and for one photon state the atom get the photon and goes
to the excited state. Hence, we transfer atom–field entanglement
to atom–atom entanglement. In the last, we perform measurement
process on auxiliary atoms and get remote momentum entangled
state between tagged atoms. In the second technique, we engineer
remote entanglement between cavity field states. The scheme con-
sists of three partite systems Alice (A),  Bob (B) and Charles (C). The
two cavities, A and B, are entangled with two  modes of third cav-
ity C, named as, C1 and C2 [9]. Here, the two modes of cavity, C,
are indistinguishable. We  perform quantum measurement at third
party Charles, disentangle Charles from our system and engineer
entanglement between two  remote parties, A and B. Hence, we
develop a channel between, A and B, which enable to share any
information.

The paper is organized as follow: In Section 2, we entangled
tagged atom in their external degrees of freedom with their respec-
tive cavities. Thereafter, we  resonantly interact an auxiliary atom
with each cavity to transfer cavity state to atomic state. Later, we
perform measurement process on auxiliary atoms. In Section 3, we
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Fig. 1. The dispersive interaction of atom with cavity field in the superposition state
of  zero and one photon. For zero photon state their momentum remains same and
for  one photon state they gets a momentum kick.

engineer entanglement between cavity, A and mode C1, of cavity
C and cavity, B and mode C2, of cavity, C. Here, cavity, C, has two
indistinguishable modes, C1 and C2 . In the last, we  perform mea-
surement on cavity, C, and get remote entangled state between, A
and B. In Section 4, we provide a general discussion of our results
and experimental parameters for the proposed scheme.

2. Remote entanglement in atomic external degrees of
freedom

The technique we present for engineering of remote entan-
glement in atomic degrees of freedom has two cavities prepared
initially in superposition state, i.e. (|0〉 + |1〉/

√
2) [15]. We  have

two levels tagged atoms, T1 and T2, both initially in their ground
state with momentum states, |Pi

0〉, and two auxiliary atoms in their
ground states, |g1〉 and |g2〉. Here, i=1, 2 stand for two  atoms, T1 and
T2. First, we interact tagged atoms with cavity fields in dispersive
fashion. The initial state vector of the system before interaction is

|�(0)〉 = 1
2

∑
i=1,2

(|0i〉 + |1i〉) ⊗ |gi, P(i)
0 〉.

The total Hamiltonian governing this interaction of an atom of
mass, M,  and center of mass momentum, P, with the field in the
dipole and rotating wave approximation [4] is

Ĥ = P2

2M
+ �ı �̂Z

2
+  �� cos(k x̂)[ �̂eg ĉ + ĉ†�̂ge].

Here, �̂ge = |e〉〈g|( �̂eg = |g〉〈e|) is atomic raising (lowering) oper-
ator, �̂Z = (|e〉〈e| − |g〉〈g|) is inversion operator, ĉ (ĉ†) is field
annihilation (creation) operator, ı is atom–field detuning and, �
is vacuum Rabi frequency (Figs. 1 and 2).

Fig. 2. The interaction of auxiliary atoms with respective cavities and the final
entangled state after measurement. Here, the circles T1 and T2 show the tagged
atoms, circles C1 and C2 show cavities, small Circles A1 and A2 show auxiliary atoms
and circle, M,  shows measurement operator. (a) Entanglement of tagged atoms and
cavities, (b) interaction of auxiliary atoms with cavities which entangled auxiliary
atoms with tagged atoms, and (c) the final entangled state between tagged atoms
after performing measurement operator.

For any arbitrary time, t, the Bragg atom–field interaction wave
function is [26]

|�(t)〉 = e
−i
(

P2
0

/2M−ı/2
) ∞∑

�= −∞

[
AP�

0,g(t)|o, g, P�〉 + AP�
1,g(t)|1, g, P�〉

+AP�
0,e(t)|0, e, P�〉

]
. (1)

We follow dispersive interaction to decrease the probability of
de-coherence and give us only two  discrete atomic momentum
path. When atom with momentum, |Pi

0〉, interact with cavity in
zero photon state, their momentum remains the same, i.e., |Pi

0〉, and
inverted momentum state, |Pi

−2〉, when cavity is in one photon state
[15]. The global phase factor has been introduced for mathematical
convenience. Under the condition of adiabatic approximation [25]
the state vector given in Eq. (1) for an interaction time, 2�ı/�2 [24],
gives the following entangle state.

|�(t)〉 = 1
2

∑
i=1,2

[
|0i, P(i)

0 〉 + |1i, P(i)
−2〉

]
.

Now to trace out cavities from the system, we interact auxil-
iary atoms, A1 and A2, initially in their ground states, |g1〉 and |g2〉,
with cavity field. For this purpose, we resonantly interacts Auxil-
iary atom, A1, with first cavity and auxiliary atom, A2, with second
cavity. The auxiliary atoms interact with optical cavities transform
the atom–field entanglement to atom-atom entanglement [26]. The
initial state vector of the system before interaction is

|�(t1)〉 =
[

1√
2

(|01, P(1)
0 〉 + |11, P(1)

−2 〉)⊗ | g1〉
]

⊗
[

1√
2

(|02, P(2)
0 〉 + |12, P(2)

−2 〉)⊗ | g2〉
]

.

First, we  resonantly interacts first auxiliary atom, A1, with first
cavity under the Hamiltonian, Ĥ = ��(�ˆ

g1e1
ĉ + �ˆ

e1g1
ĉ†). Here, �

is atom–field coupling constant, �ˆ
g1e1

(�ˆ
e1g1

) denotes the atomic
raising (lowering) operators and, ĉ and ĉ† are field annihilation and
creation operators. After the interaction of the first auxiliary the
wave function for the system is

|�(t1) = 1
2

[{|01, g1, P(1)
0 〉 + cos(�rt1)|11, g1, P(1)

−2 〉

− isin(�rt1)|01, e1, P(1)
−2 〉} ⊗ {(|02, P(2)

0 〉 + |12, P(2)
−2 〉)

⊗|g2〉}].

For an interaction time, t1 = �/2�r [24], the state of first cavity
transfer to the first auxiliary atom, A1, and first cavity comes to
vacuum state. The state vector for the system is

|�(t1)〉 = 1
2

[(|g1, P(1)
0 〉 − i|e1, P(1)

−2 〉)|0〉 ⊗ (|02, P(2)
0 〉 + |12, P(2)

−2 〉)|g2〉].

Now, we interact second auxiliary atom, A2, resonantly with the
second cavity field. For a time of interaction equal to, �, Rabi cycle
[26], i.e. t2 = �/(2�r) the second cavity state transfer to second aux-
iliary atom and comes to vacuum state. The final state of the system
becomes

|�(t2)〉 = 1
2

[(|g1, P(1)
0 〉 − i|e1, P(1)

−2 〉) ⊗ (|g2, P(2)
0 〉 − i|e2, P(2)

−2 〉]|0 0〉.

The combined state of the system can be written as
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