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a  b  s  t  r  a  c  t

Kernel  density  estimators  (KDE)  used  for many  medical  image  applications  only  consider  the  intensity
information  of  each  pixel  or its neighbors  without  the ability  of  expressing  the  structure  and  shape  of
tissues  and  organs,  and  they  suffer  from  boundary  bias  problem.  In  this  paper,  we  propose  a  new  first-
order  kernel  density  estimation  (FOKDE)  method  for 1D  intensity  information  and  2D  spatial  information
of  medical  image  in  two  steps.  First,  the FOKDE  of  intensity  information  is  estimated  and  applied  to
medical  image  segmentation  with  the  multi-thresholding  algorithm.  Second,  we  estimate  the  FOKDE  of
spatial  information  on  the  initial  segmentation,  which  can express  the  structure  and  shape  of  organs  and
tissues.  In  order  to evaluate  the  FOKDE  and  KDE  of the  2D  spatial  information,  we  apply  them  to  medical
image  segmentation  with  the  hill-climbing  strategy.  Density  estimation  experiments  and  segmentation
application  results  on  the  simulated  dataset  and  real  abdomen  CT  images  show  us that  the  FOKDE  has
smaller  boundary  bias  than  the  KDE,  and that  it can  estimate  the  structure  and shape  of tissues  and  organs
with  spatial  information  effectively.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

It is important to model the unknown density functions of the
images in medial image processing system [1]. The density function
can be applied to medical image segmentation [2,3] in which the
density estimate can be used as a priori probability. Medical image
registrations [4,5] are achieved frequently through many quanti-
ties derived from the density function, particularly entropy and
mutual information. Many medical image features are extracted
based on the density estimate and are used for image retrieval [6],
image classification [7] and image categorization [8]. Most pub-
lished methods estimate the density function using histograms
[9,10] or kernel density estimators [11,12] (often called Parzen
Windows estimators). These approaches have the advantage of
being nonparametric, so they are generally applicable.

The abdomen region images are difficult to segment because
the intensities of the images are near each other and the contrast
between various structures is poor. Therefore, density estimation of
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the spatial information is very important to medical image process
applications. The most successful image segmentation approaches
have been based on the consideration of the spatial information
as implicit prior information [13]. The histogram and KDE in these
applications [9–12] are only based on image intensity information
without taking into account the spatial correlation of the same or
similar valued elements. Several approaches incorporate the spa-
tial information into the histogram and KDE. Kupinski [14] used an
isotropic Gaussian function to interpret the prior knowledge of each
target region’s shape. They multiplied this spatial constraint func-
tion with the original image to suppress distant pixel values. Liew
[15] introduced a spatial constraint where if all 9 pixel in a 3 × 3
patch belong to the same class, the center pixel will be smoothed
by its neighbors. Cheng [16] used the fuzzy homogeneity approach
in which the concept of homogram was introduced. Mohabey [17]
introduced a concept of histon, which is a contour plotted on the
top of the histogram by considering a similar color sphere of a pre-
defined radius around a pixel. However, the improved histogram or
KDE methods with so called spatial information, which is just the
intensity information of its neighbor, are still a 1D density distribu-
tion which represents the global information [18], and they can’t
depict the shape and structure of tissues and organs.

The most straightforward method is to include the coordinate
information as a part of features, like the idea of Greenspan’s
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method [19]. However, since the coordinate data does not form
a compact mass in the feature space, this method will result in
loose clusters even for a perfect feature set [20] and the curse of
dimensionality. First, the computational time and space burden
can increase exponentially with dimension. Second, the number of
samples needed grows exponentially with the increase of dimen-
sion. One slice of the medical image sequence only has the number
of samples for 2D data set, which is not enough for the 3D feature
space. Therefore, density estimate of the 2D medical image with
three features cannot be smooth.

One motivation and contribution of this paper is to estimate
the 2D density function of the medical image which can express
the shape and structure of tissues and organs with the intensity
information and spatial information in two steps. First, we  estimate
the density function of global intensity information and use it to
segment initially the medical images, and then estimate the 2D
density function of spatial information for each initial segmentation
result. Our method can overcome the problems of density estimate
with only 1D intensity information or 3D features.

Another motivation and contribution of this paper is extending
the KDE to the FOKDE for 1D intensity information and 2D spa-
tial information to reduce the boundary bias effect. Because of the
noise, radical variation and the partial volume effect, the boundary
biases of the KDE for tissues and organs in abdomen images are
more serious than other images. To validate the FOKDE, we  apply it
to medical image segmentation with the multi-thresholding algo-
rithm and hill-climbing strategy.

The paper is organized as follows. Relative works are reviewed
in Section 2. Our works is presented in Section 3. Application of the
FOKDE to medical image segmentation is presented in Section 4.
Experiment results are shown in Section 5. Some conclusions are
presented in Section 6.

2. Relevant works

Since the KDE was proposed by Parzen [21], its relative topics
have been investigated over the last few decades from different
perspectives. In this paper, we focus on spatial information, bias
reduction and kernel bandwidth [22] in medical image process
application. The relative works on first problem is reviewed in Sec-
tion 1.

The bias reduction in kernel estimation has received consider-
able attention in the statistics literatures, such as the boundary
kernel method [23]. However, a drawback of the boundary kernel
method is that the estimates might be negative near the endpoints.
To correct this deficiency, some remedies have been proposed.
Gasser [24] has suggested various boundary kernels mixture to
remove the bias. Rice [25] suggested a direct method for eliminating
the second order bias using a linear combination of two estima-
tors. Jones [26] proposed that a linear combination of a kernel and
its derivative can also remove the second order bias. The local lin-
ear method is a special case of the boundary kernel method that is
thought of by some as a simple, hard-to-beat default approach. The
boundary kernel and related methods usually have low bias but the
price for that is an increase in variance [27].

Another hot topic is the estimation of the kernel bandwidth
[28]. The bandwidth influences the degree of smoothing for the
density function approximation and the location of its modes. The
algorithms for finding the bandwidth in statistics can be classified
into two categories: quality-of-fit methods and plug-in methods.
The quality-of-fit methods use cross-validation by leaving certain
data samples out while approximating the density function with
the sum of kernels located at the remaining data [29]. The plug-in
methods calculate the bias in the density function approximation
such that it minimizes the mean integrated square error (MISE)

between the real density and its kernel-based approximation [30].
However, the plug-in methods require an initial pilot estimate of
the bandwidth for an iterative estimation process. Botev [31] pre-
sented a new plug-in bandwidth selection method that is free from
the arbitrary normal reference rules used by existing methods.
Besides those methods, Adrian [32] proposed a Bayesian approach
to find the kernel bandwidth by modeling distributions of variances
of localized data subsets.

3. First-order kernel density estimation for medical image

3.1. FOKDE of the intensity information

Suppose the pixel intensities of medical image X1, X2, . . .,  Xn

have an unknown density f(x). An extension of local likelihood
method to the density estimation problem is described by Loader
[33]. Consider the log-likelihood function

L(f ) =
n∑

i=1

log (f (Xi)) − n
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)
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)

is the added
a penalty term. If f is a density, the penalty is 0. The reason for
adding the penalty is that L(f) can be treated as a likelihood function
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where W(•) is a kernel function and h is a smooth parameter. A
local polynomial approximation for log [f (u)] in the neighborhood
of x can be given by

g(u) = log[f (u)] ≈ a0 + a1(u − x) + · · · + ap
(u − x)p

p!
(3)

The local likelihood is given by
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Let â = (â0, â1, . . ., âp)T be the coefficients to maximize of the
local log-likelihood.

Theorem 1. For p = 0, the local likelihood density estimate in Eq.
(4) is the KDE.

Proof: according to Eq. (4), for p = 0, the local likelihood density
estimate is

Lx(a) =
n∑

i=1

W
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h

)
a0 − n

∫
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)
exp (a0)du (5)

The local parameter vector â is the solution of the system of local
likelihood equations obtained by differentiating Eq. (5). Because
â = (â0, â1, . . ., âp)T are the coefficients that maximize of the local
log-likelihood, we  have
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