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a  b  s  t  r  a  c  t

In this  paper  the  synchronization  of  fractional-order  chaotic  systems  is  studied  and  a new  single state
fractional-order  chaotic  controller  for chaos  synchronization  is  presented  based  on  the  Lyapunov  stability
theory.  The  proposed  synchronized  method  can  apply  to  an  arbitrary  three-dimensional  fractional  chaotic
system  whether  the  system  is incommensurate  or commensurate.  This  approach  is universal,  simple  and
theoretically  rigorous.  Numerical  simulations  of several  fractional-order  chaotic  systems  demonstrate
the  universality  and  the effectiveness  of  the  proposed  method.
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1. Introduction

In recent years, fractional dynamic systems, which is the
generalization of integer-order dynamic system, provide better
mathematical models for some actual physical and engineering sys-
tems [1,2]. The fractional nonlinear dynamic systems have many
dynamic behaviors which are similar to the integer-order sys-
tems, such as chaos, bifurcation, and attractor [3–6]. Control of
the chaotic systems and chaotic phenomenon synchronization have
potential applications in physics, biology, information, chemistry,
and other fields [7–9]. But we find that chaos synchronization is
very important but also very difficult. In this area, there are a
few synchronization methods, such as PC control [10], the nonlin-
ear state observer method [11], the sliding mode control [12] and
adaptive-feedback control [13]. However, most of the above meth-
ods apply to certain fractional systems, and there are few general
methods that can be applied to control arbitrary fractional chaotic
systems.

On the other hand, the fractional-order control, which is a gen-
eralization of the traditional integer-order control, is becoming a
matter of concern because of its flexibility and integrity [2,14–16].
The TID controller [14], the PI�D� controller [15], and the CRONE
controller [16] are among the well-known fractional-order con-
trollers. In those papers, it is verified that the fractional-order
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controllers are easier to implement and less cost compared to the
traditional controllers.

Therefore, in this paper we present a new fractional-order con-
troller, which only contains a single state, to synchronize the
arbitrary 3D fractional-order chaos systems. The control approach
which is based on the Lyapunov stability theory has the follow-
ing three advantages. (1) It is so general that it can be applied
to almost all 3D chaotic systems whether systems are incom-
mensurate or commensurate. (2) It can synchronize the systems
with little control cost and very fast. (3) It is very simple, easily
realized experimentally, and more suitable for engineering appli-
cations. Numerical simulation results of synchronization of the
fractional-order unified system, the fractional-order Liu system,
and the fractional-order Chua–Hartley’s system demonstrate the
effectiveness and the validity of the proposed method.

2. Fractional derivatives and fractional dynamic systems

The fractional calculus plays an important role in modern sci-
ence. In this paper we  mainly use the Caputo fractional operators
[1,2,17]. The Caputo definition of the fractional derivative, which
sometimes called smooth fractional derivative, is described as

Dq
t =

⎧⎪⎨
⎪⎩

1
�(m − q)

∫ t

0

(t − �)m−q−1f (m)(t)d�, m − 1 < q < m,

dm

dtm f (t), q = m,

(1)
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where m is the first integer which is not less than q, and � is the
Gamma  function,

�(z) =
∫ ∞

0

tz−1e−tdt. (2)

When numerically solving the fractional differential equations, we
also adopt the improved version of Adams–Bashforth–Moulton
algorithm [2,18] which is proposed based on the
predictor–correctors scheme. To explain the method we  consider
the following differential equation:

Dq
t y(t) = r(t, y(t)), 0 ≤ t ≤ T,

y(k)(0) = y(k)
0 , k = 0, 1, · · ·,  m − 1.

(3)

The differential Eq. (3) is equivalent to Volterra integral equation
in the following:

y(t) =
�q�−1∑
k=0

y(k)
0

tk

k!
+ 1

�(q)

∫ t

0

(t − s)q−1r(s, y(s))ds. (4)

Now, set h = T/N, tn = nh(n = 0, 1, . . .,  N). The integral equation can be
discretized as follows:

yh(tn+1) =
�q�−1∑
k=0

y(k)
0

tk

k!
+ hq

�(q + 2)
r(tn+1, yp

h
(tn+1))

+ hq

�(q + 2)

n∑
j=0

aj,n+1r(tj, yh(tj)), (5)

where

yp
h
(tn+1) =

�q�−1∑
k=0

y(k)
0

tk

k!
+ 1

�(q)

n∑
j=0

bj,n+1r(tj, yh(tj)), (6)

and

aj,n+1 =

⎧⎪⎨
⎪⎩

nq+1 − (n − q)(n + 1)q, j = 0,

(n − j + 2)q+1 + (n − j)q+1 − 2(n  − j + 1)q+1, 1 ≤ j ≤ n,

1, j = n + 1,
(7)

bj,n+1 = hq

q
((n + 1 − j)q − (n − j)q). (8)

The error of this approximation is described as follows:

max
j=0,1,...,N

|y(tj) − yh(tj)| = O(hp). (9)

where p = min(2, 1 + q).
In this paper we mainly consider the order 0 < q < 1. There are

some general properties of the fractional-order derivative which
are described as follows [1,2].

Property 1. Caputo fractional derivative is a linear operator, i.e.,

D˛
t (�f (t) + �g(t)) = �D˛

t f (t) + �D˛
t g(t), (10)

where �, � are real constants.

Property 2. Caputo fractional derivative satisfies additive index
law(semigroup property)

D˛
t Dˇ

t f (t) = Dˇ
t D˛

t f (t) = D˛+ˇ
t f (t), (11)

which holds under some reasonable constraints on the function f(t).

Property 3. For the fractional-order nonlinear system D˛
t x(t) =

f (x(t)), f ( x(t)) satisfies the Lipschiz condition with respect to x, i.e.,

||f (x1(t)) − f (x2(t))|| ≤ l||x1(t) − x2(t)||, (12)

where || · || is 1-norm and l is a positive constant. Especially, if f ( x) = 0
at x = 0. It follows that

||f (x(t))|| ≤ l||x(t)||. (13)

In the following, we  mainly consider a three-dimensional
fractional-order nonlinear system

D˛
t x = f (x), x(0) = c, (14)

where ˛(  ̨ ∈ (0, 1]) is the fractional order of derivatives, x = (x1(t),
x2(t), x3(t))T is the system state variable, x(0) = (c1, c2, c3)T is the
initial value, and D˛

t denotes the Caputo fractional-order derivative
operator [1]. The equilibrium points of system (14) are calculated
via solving f ( x*) = 0. Then we  have the following conclusion for the
stability of these equilibrium points.

Theorem 1. [2,19] For  ̨ ∈ (0, 1] the equilibrium point x* of system
(14) is globally asymptotically stable if all the eigenvalues �i(i = 1, 2, 3)
of the Jacobian matrix A = ∂ f /∂ x, evaluated at x*, satisfy the condition

|arg(�i)| > ˛�/2, i = 1, 2, 3. (15)

3. Synchronization of the fractional-order chaotic system

For the three-dimensional fractional-order nonlinear system
(14), we assume that:

f (y) − f (x) = Ax,y(y − x), (16)

where Ax,y is a bounded matrix with its elements depending on x
and y. We consider the system (14) is the drive system, then the
response system is given as

D˛
t y = f (y). (17)

We add a control function ϕ( u) to the system (17), then the con-
trolled response system is

D˛
t y = f (y) + ϕ(u). (18)

Let synchronization error e = y − x, the error system from (14) and
(18) is obtained

D˛
t e = f (y) − f (x) + ϕ(u) = Ax,ye + ϕ(u). (19)

The control function is usually given as

ϕ(u) = −ku, (20)

where k is the control parameter matrix which is always diagonal
and u is defined as

D1−˛
t u = ωe, (21)

with ω = diag(ω1, ω2, ω3) being a nonnegative diagonal matrix.
According to the Property 2 and formula (21), we have u̇ = D1

t u =
D˛

t D1−˛
t u = ωD˛

t e. And according to Properties 1 and 3 of the Caputo
fractional derivative operator, there is a positive number � for Eq.
(21), such that ||�e|| ≤ �|| u||. Let ω* be the minimum positive value
of {ω1, ω2, ω3}, then || e|| ≤ �/ω*|| u|| and if u = 0, then e = 0.

Then we  can easily get that the systems (14) and (18) are syn-
chronized if and only if the error system (19) is asymptotically
stable at the origin point.

Theorem 2. The fractional-order controller can control the error sys-
tem (19) responses to the asymptotically stable at the origin point, i.e,
systems (14) and (18) are globally asymptotically synchronized, if the
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