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a  b  s  t  r  a  c  t

For  the  control  and  system  identification  problems  of  the  deceleration  phase  of  the  ash  wood  drying
process,  we  propose  a  deceleration  phase  modeling  method  of  ash  wood  drying  using process  neural
networks  with  double  hidden  layers.  This  method  applies  time-varying  characteristics  of process  neural
networks  and  the  ability  to extract  time-space  cumulative  effects.  The  time-varying  characteristics  of
wood  drying  deceleration  phase  modeling  under  time  series  background  are  directly  incorporated  into
the  model.  By  comparison  with  traditional  neural  network  modeling  results,  we  prove  that  the  model
of process  neural  networks  has  better  control  accuracy,  providing  an idea  to solve  control  and  nonlinear
system  identification  problems  under  a time  series  background.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Wood drying is an important technique part of wood processing;
the overall promotion of wood drying performance provides strong
technical support for efficient utilization of wood resources. The
main problems in computer-controlled wood drying are first, the
temperature and humidity control model is used to character-
ize the relation between temperature and humidity, which is
the foundation and basis of a wood drying modeling simulation
and controller design. Secondly, the drying benchmark model and
inverse model characterizes the nonlinear mapping relation of tem-
perature, humidity and wood moisture content in the design of
a computer control system. The benchmark model uses moisture
content change to achieve control and prediction in the wood
drying process by establishing a mapping model incorporating tem-
perature, humidity, and moisture content.

The wood drying process is a complex strong coupling, non-
linear system with time-varying and uncertain characteristics.
The main parameters characterizing the drying process are time-
varying features, so the wood drying benchmark modeling and
inverse modeling systems are part of a time series prediction con-
trol problem. The establishment of a drying benchmark model and
an inverse model aims at computer control of the wood drying
process by simulating the complex nonlinear relationship between
temperature, humidity, and wood moisture content. The wood dry-
ing process can be divided into three stages: the preheating stage,
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a constant rate drying stage (moisture content is above fiber satu-
ration point), and a deceleration drying stage (moisture content
is below fiber saturation point). The water evaporation mecha-
nism is different in each stage: the drying curve (i.e., moisture
content changing with time) is approximately linear in a constant
rate drying period, the corresponding model being relatively sim-
ple. The aim for the preheating stage is to raise the wood internal
temperature quickly to a certain level and avoid premature water
evaporation at the wood surface; this stage is relatively short. The
deceleration drying stage mechanism is relatively complex. The
wood drying segment model has been studied mostly for the decel-
eration stage. Cao Jun, Hu Kunlun et al.[1] studied the wood drying
deceleration phase modeling by using traditional neural networks.
In our paper, process neural networks were applied to wood dry-
ing modeling in the deceleration phase. The process neural network
model was  established for the ash wood drying deceleration phase.
We compared and analyzed the performance, and achieved control
of the wood drying process and system identification by using an
extraction ability to achieve a time-space cumulative effect and
strong nonlinearity of process neural networks.

2. Materials and methods

2.1. Data acquisition

Data were obtained using the following: a miniature industrial
drying kiln of size 1.8 m × 1.7 m × 1.2 m;  a detection device hav-
ing two  temperature sensors, two humidity and six wood moisture
content sensors; a heating, spray and, moisture-discharging device.
Under normal working conditions of the kiln, data were recorded
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Fig. 1. Structure of drying kiln.

for temperature, humidity, wood moisture content, and the states
of the spray valve, moisture-discharging valve and heating valve.
The heater was a switch type for raising the temperature in the kiln.
The spray and moisture-discharging valves were used to adjust the
humidity in the kiln. A fan was used to accelerate air flow rate by
running at full speed, so it would not be considered in the experi-
ment.

The drying kiln (Fig. 1) consisted of a controller, PCM (signal
acquisition and processing module), PLC (control interface) and kiln
facilities. The PCM collected the temperature, EMC  (equilibrium
moisture content), wood moisture content and other data for con-
version to a digital signal, transmitted to the controller. According
to the demand and current kiln states, the controller adjusted the
fan, heating pipe, spray valve, and exhaust window, and ensured
that the temperature and equilibrium moisture content met  the
requirements of the kiln. The controller continuously monitored
PCM data, saved and recorded the drying kiln operation states, and
enabled an efficient drying process.

30 mm thick ashes were selected to carry out a three-kiln dry-
ing and data-sampling experiment. All data were obtained under
normal working conditions of the system. To generate the identifi-
cation data, continuous step signals were applied to the kiln. This
method maintained the integrity of the control system and control
object; it activated all determinants of the process, and performed
simultaneous sampling of temperature, humidity, wood moisture
content and other data in the kiln, thus acquiring input and output
data for identification and analyses.

2.2. Data selection

With airflow speed a determinant of the environment, external
factors affecting the wood drying process were temperature and
humidity of the medium [2]. Wood moisture content values char-
acterized the drying effect after the wood drying process. Wood
drying data from 30 mm thick ash obtained under the normal work-
ing conditions of the system were used as original data for control
modeling. Ash wood drying data were as follows: the initial mois-
ture content was 68.7%, the fiber saturation point was  30%, and the
final moisture content was 8.9%. The deceleration drying stage data
of one kiln (moisture content from 30.7 to 8%) were selected to form
59 sample sets, which were used as training samples. To verify the
model’s overall performance, kiln ash wood drying data (moisture

content decreased from 30 to 8.9%) were selected to form 53 sample
sets for testing. The temperature-humidity function was  fitted by
ten consecutive discrete temperature and humidity data sets, and
wood moisture content function fitted by ten consecutive discrete
moisture content data sets before a time-point was used as an input
function. The wood moisture content value at the time-point was
used as output. That is, the corresponding time-varying function
was fitted by two-point temperature, humidity and wood mois-
ture content consecutive data, before the time-point. The data were
used as the inputs of process neural networks. The wood moisture
content constant at the time point was  used as the network output,
as shown for a single sample in formula (1)

{x1(t), x2(t), ..., xi(t), ..., xn(t), d}, (1)

where xi(t)(i = 1, 2, · · · , n) represents an arbitrary input function,
which is fitted by a series of discrete input data, d is the desired
output of network, n is the number of input neurons.

2.3. Data preprocessing

To reduce noise interference to the system identification and
to improve convergence speed of the process neural networks, the
following steps were adopted to realize data preprocessing: a log-
arithmic sigmoid function was  used as an excitation function, its
output in the range of (0, 1). If normalizing data to the [0,1] range
directly by using standard formula, then there will be 0 and 1 values
within each column. But close to the 0 and 1 values, the excitation
function was not sensitive to input changes, so the network adjust-
ment value to weight was rather small. Therefore, in the practice of
data normalization, the normalized interval was  adjusted to avoid
the emergence of 0 and 1 values, so formula (2) was  adopted to
normalize data, with its interval in the range of [0.15, 0.85].

x∗ = 1 − e−
(

0.1625+ (1.8971−0.1625)(x−xmin)
xmax−xmin

)
, (2)

where x is original data, x* is the normalized data, xmax and xmin
are the maximum and minimum of x, respectively. Note that if the
original data dimension in each row or column was  different, nor-
malization should be carried out in each row and column of data,
respectively.

In addition, after completing network training and testing, anti-
normalization of response network output should be carried out.
The specific formula is shown in formula (3).

x = xmin + xmax − xmin

1.8971 − 0.1625

(
ln

1
1 − x∗ − 0.1625

)
. (3)

2.4. Drying deceleration phase modeling based on process neural
network

2.4.1. Wood drying deceleration control model
The traditional neural network achieved better results in the

wood drying control and system identification. But specific to the
control and nonlinear system identification problems with a time
series background, an important factor that cannot be ignored is
the time-varying characteristics. Based on these characteristics,
some researchers [3–14] had introduced delay neural networks
and dynamic recurrent neural networks to solve time series con-
trol problems. At the same time nonlinear system identification was
extended to the more general nonlinear time-varying problem. The
purpose of using time delay neural networks and dynamic recur-
rent neural networks was to take time-varying characteristics into
time series control and system identification by delay and feedback.
Relatively, this is an indirect way and could not directly reflect the
time-varying characteristics of system input. Based on the above
analysis, this paper introduces two-hidden-layer feed-forward pro-
cess neural networks to time series control and nonlinear system
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