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spliceosomal components have been recorded in degenerative syndromes and haematological neoplasia,
thereby highlighting the importance of accurate splicing execution in homeostasis of assorted adult tis-
sues. Moreover, insufficient splicing underlies defective development of craniofacial skeleton and upper
extremities. This review summarizes recent advances in the understanding of splicing factor function

;(;ﬁ‘::ggs;ne deduced from cryo-EM structures. We combine these data with the characterization of splicing factors
Mutations implicated in hereditary or somatic disorders, with a focus on potential functional consequences the
Retinopathy mutations may elicit in spliceosome assembly and/or performance. Given aberrant splicing or perturba-
Congenital craniofacial disorders tions in splicing efficiency substantially underpin disease pathogenesis, profound understanding of the
Haematological malignancies mis-splicing principles may open new therapeutic vistas. In three major sections dedicated to retinal dys-
trophies, hereditary acrofacial syndromes, and haematological malignancies, we delineate the noticeable
variety of conditions associated with dysfunctional splicing and accentuate recurrent patterns in splicing
defects.
© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Removal of introns from pre-messenger RNA (pre-mRNA) is a
central step in eukaryotic gene expression and a fundamental pre-
requisite for productive translation. Each splicing cycle is achieved
in two stepwise trans-esterification reactions that are catalysed
by the spliceosomal machinery. Most introns are processed by the
major spliceosome consisting of essential RNA-protein complexes,
namely the U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein
particles (snRNPs), whereas a small fraction of introns is recognized
by the U12-dependent minor spliceosome comprised of U11, U12,
U5, U4atac, and U6atac snRNPs. Intron removal and exon joining
occurs in a series of orchestrated steps. Initially, U1 and U2 aux-
illiary factors interact with the pre-mRNA 5’-splice site (ss) and
sequences at the 3’-ss, respectively: the polypyrimidine tract is
recognized by the protein U2AF2, and the YAG/R 3’-ss consensus
motif by U2AF1. U2AF2 forms a stable heterodimer with U2AF1 and
interacts with SF1/mBBP which recognizes the pre-mRNA branch
site (complex E). U2-associated protein complexes SF3a and SF3b
subsequently navigate the U2 snRNP to the branch point sequence
and displace SF1/mBBP to form the prespliceosomal complex A [1].
Binding of the U4/U6.U5 tri-snRNP to the A complex yields the pre-
catalytic pre-B complex [2]. U1 is subsequently displaced by the
activity of the RNA helicase yPrp28p (yPrp28p in the budding yeast
Saccharomyces cerevisiae; DDX23 in humans) (B complex, Fig. 1)
[3]and U4 snRNA and U4/U6 di-snRNP-specific proteins dissociate
upon unwinding of the U4/U6 helix by yBrr2p helicase (SNRNP200
in humans) [4,5]. These structural rearrangements allow the bind-
ing of the NineTeen- and NineTeen-related complexes (NTC and
NTR, respectively) to produce the activated B3t and catalytically
active B* complexes [6,7]. During these processes, U6 snRNA refolds
to form an internal stem loop and to extensively base-pair with U2
snRNA [8]; both structures later contribute to the catalytic RNA core
of the spliceosome [9,10]. The 5’-ss is shifted and tethered to the
U6 snRNA ACAGAGA region, allowing for attack of the 2’-OH group
of the branch point adenosine [11]. The first trans-esterification
reaction produces a free 5'-exon 1 and intron lariat-3’-exon 2
intermediates [1]. The resultant C complex is further remodelled
to C*, where exons 1 and 2 are aligned by U5 snRNA for the
second step of splicing [12,13]. Two DExD/H-box RNA helicases,
namely yPrp2p (DHX16 in humans) [14] and yPrp16p (DHX38)
[15], have been implicated in spliceosome rearrangements dur-
ing catalytic steps, yielding B* [16] and C* [15], respectively. The
ligated mRNA product is finally released by the yPrp22p (DHXS8)
helicase [17] and the residual intron-lariat spliceosome disassem-
bled by yPrp43p (DHX15) [18], which allows recycling of snRNPs
for repeated rounds of splicing.

In the recent years, the cryo-electron microscopy (cryo-EM)
technique has allowed unprecedented depiction of the splicing
machinery architecture. Initially, the structures of the yeast [19,20]
and human [21] U4/U6.U5 tri-snRNP particle emerged. Subse-
quently, several research groups succeeded in resolving the yeast
pre-catalytic complexes B [22] (Fig. 1) and B3t [23] structure, or
captured the spliceosome assembly immediately after lariat for-
mation (C complex) [24,25]. Also yeast and human spliceosomes
stalled after yPrp16p/DHX38 remodelling (C*) were recorded
[26-29]. The major features of the available human structures
(i.e. tri-snRNP and the C* complex) are in general agreement with
the yeast counterparts and reveal a rigid core of approximately
20 components [29]; we thus provide structural cues gleaned
from the yeast models in cases the structure of the correspond-
ing human complex has not been solved. In contrast, the human
spliceosome contains several additional proteins along with the
components of the Exon junction complex [29], and the position
of SNRNP200/yBrr2p radically differs in the human and yeast tri-
snRNP [21]. Together, the series of spliceosomal structures has

provided remarkable insights into molecular features of splicing
catalysis and supplied accurate structural hints on how patho-
logical variants of splicing factors might compromise spliceosome
assembly and catalysis or promote splicing errors.

2. Core spliceosome mutations in retinal dystrophies

Inherited retinal dystrophies comprise a complex set of hered-
itary conditions that feature degeneration of photoreceptor cells
and dysfunction of retinal pigmented epithelium (RPE). To date,
nearly 300 genes and/or loci have been found implicated in reti-
nal disease (RetNet, https://sph.uth.edu/retnet/), dozens of which
associate with non-syndromic retinitis pigmentosa (RP). RP is char-
acterized by gradual decrease in both photoreceptor types (rods
to a greater extent than cones) which triggers the migration of
RPE cells to the inner retina [30]. Consistently, patients initially
experience difficulties with dark adaptation and night blindness
(rod-mediated achromatic vision in dim light), followed by the
progressive loss of peripheral to central field vision (cone-related
fine acuity vision in daylight and colour vision). With a worldwide
prevalence of approximately 1:4000 individuals, RP accounts for
the predominant form of familial blindness and follows several
traits of inheritance [31]. RP manifests in diverse forms with vary-
ing genetic etiologies, but these can be roughly stratified according
to the presumed gene function or the major biochemical path-
way affected (e.g. components of the phototransduction cascade
[32-34] or structural proteins [35]). In most cases, absent or defec-
tive gene products trigger photoreceptor cell death by formation
of toxic aggregates, neglected cellular trafficking, misbalancing cell
physiology [36] or disruption of paracrine interactions [37]. A set
of RP patients harbours mutations in genes that encode ubiquitous
RNA splicing factors (Fig. 2). These include three U5 snRNP pro-
teins Prpf8 [38], SNRNP200 [39], and Prpf6 [40], and three U4/U6
di-snRNP constituents Prpf3 [41], Prpf4 [42], and Prpf31 [43]. RP,
in addition, evolves due to defects in DEAH-box helicase DHX38
[44], and putatively also in the splicing factor PAP1 (encoded by
the RP9 gene [45]). Except for DHX38, pathogenic mutations in
spliceosomal genes cause autosomal-dominant RP forms.

2.1. RP caused by impairment of U5 snRNP factors Prpf8,
SNRNP200, and Prpf6

Prpf8 protein (encoded by the PRPF8 gene) is the central scaf-
folding platform of both the U5 snRNP [46,47] and the whole
spliceosome, where it orchestrates individual splicing steps [19,20].
yPrp8p constitutes of four major structural regions — the N-terminal
NTD1 and NTD2 domains, the central core that includes reverse-
transcriptase thumb/X (RT) and endonuclease (En) domains, the
RNaseH-like domain (RH), and the Jab1/MPN domain. The N-
terminal region anchors ySnu114p (EFTUD2 in humans), U5 snRNA,
and the U5 Sm ring at the spliceosomal foot structural unit,
whereas the C-terminal Jab1/MPN domain interacts with yBrr2p
at the head corner of the spliceosome triangle [19,20] (Fig. 1).
The architecture of the human Prpf8 in the tri-snRNP model is
essentially similar except for the RH domain which is rotated by
180° in yeast compared to humans [21]. In the precatalytic state
yPrp8p core region and RH domain stabilize interactions among
U4/U6 di-snRNP members yPrp31p, yPrp3p, yPrp4p, ySnul3p,
and yPrp6p (which is tri-snRNP specific in yeast [48], but tightly
associated with the human U5 snRNP [49]), which altogether
hold the U4/U6 snRNA duplex in an inactive conformation [20].
U4/U6 proteins are removed during spliceosome activation as the
yBrr2p unwinds the U4/U6 duplex [50,51], and yBrr2p is again
operational in the transition between the first and second cat-
alytic steps [52]. SNRNP200/yBrr2p activity is tightly controlled by
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