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a  b  s  t r  a  c  t

The  slope  of  the root  mean  square  (SlopeRMS)  can  be applied  to evaluate  mid-spatial  frequency  mirror
surface  errors  for larger  aperture  mirrors.  In this  paper,  the SlopeRMS  is analyzed  from  three  different
perspectives.  First,  the  relationship  between  the  SlopeRMS  and  the  basis  polynomials  is discussed,  and  the
mathematic  relationship  between  the  SlopeRMS  and  the  standard  orthogonal  basis  was  obtained.  Second,
the  SlopeRMS  is  analyzed  by  applying  the Wiener  process,  with  the  results  indicating  that  the  ideal  mirror
surface  error  obeys  the  Gauss  distribution  law.  Then,  a  power  spectrum  analysis  method  based  on the
SlopeRMS  is  proposed.  The  discrete  random  variables  for  describing  the  coma,  astigmatism  and  quatrefoil
were analyzed  and  the  spectral  energy  distribution  for the  Zernike  polynomials  is discussed.  Finally,  by
processing  the  error data  of  the Thirty  Meter  Telescope  tertiary  mirror  surface  figure,  the frequency
domain  energy  distribution  of the actual  mirror  surface  figure  was  obtained.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

A variety of methods exists to evaluate the surface figure error
of reflective mirrors. As a traditional evaluation method, the root
mean square (RMS) is typically used to describe the surface figure
error of small aperture mirrors. Because the size of the grinding
tools and the size of the optical components are similar, it can be
applied to describe the simplest optical characteristics [1,2].

However, for large aperture reflective mirrors, this evaluation
method faces several limitations. First, the small size of the grind-
ing tools that are employed to polish the large aperture mirror will
produce sub-aperture scale and mid-spatial frequencies, especially
for aspheric surfaces and free surfaces. Particularly the grinding
smoothness depends on a uniform distribution caused by the tools
and the holding pressure time. Second, a multi-point support is
always used for large aperture mirrors. As the number of support
points increases, the mirrors will become more prone to mid-
spatial frequencies. These mid-spatial frequencies produced by
fringe irregularities are several times smaller than the optical ele-
ment aperture, but larger than the surface’s precision structure, i.e.
the mirror surface roughness [3,4].

For different spatial frequency mirror surface figure errors, dif-
ferent evaluation methods produce different results. Fig. 1 shows a
schematic illustration of two different optical surface figure errors.
The optical surface of mirror A exhibits low frequency errors, while
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the optical surface of mirror B shows high frequency errors. When
using the traditional RMS  optical surface evaluation method, the
RMS  value is relatively large for mirror A, and relatively small for
mirror B, and, consequentially, mirror A is unqualified, and mirror
B is qualified. However, mirror A mainly exhibits low frequency
errors, which can be easily corrected by applying adaptive optics,
whereas the high frequency errors of mirror B are difficult to cor-
rect by adaptive optics. Therefore, the RMS  evaluation method has
its limitations for large aperture mirrors. In contrast, if using the
slope of the root mean square (SlopeRMS) to evaluate the mirror
surface error, the SlopeRMS value obtained for mirror A is small,
and the SlopeRMS obtained for mirror B is large. Thus, mirror A is
qualified, and mirror B is unqualified [1–4].

For large aperture mirrors, the surface figure test and evaluation
directly affects the manufacturing accuracy and imaging quality
[5,6]. The RMS  test shows obvious shortcomings for evaluating
large aperture mirrors. In recent years, some researchers therefore
proposed using the SlopeRMS to evaluate the mirror surface error
in the time domain. Although it can control rigid body displace-
ments and reflect a wide range of roughnesses [7,8], for small scale
shakes, there will be dramatic fluctuations. Therefore, an analysis
based on the frequency-domain is necessary.

2. Mathematical analysis of the SlopeRMS

2.1. SlopeRMS and basis polynomials

Low order wave front errors are always fitted by basis polyno-
mials. More precisely, the wave front error can be described by
discrete index basis polynomials:
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Fig. 1. Schematic illustration of two different mirror surface figures with (A) low-
frequency errors and (B) high-frequency errors, respectively.

˚ (m, n) =
∑

auvWuv (m, n) (1)

where auv is the basis fitting coefficient and Wuv(m,n) denotes the
discrete index basis.

For a N × N sampling aperture, Wuv(m,n) can be expressed by

Wuv (m,  n) = 1
N × N

exp
[

2�j
N

(um + vn)
]

(2)

For convenience, only the imaginary component is considered in
the one dimensional case, resulting in a standard sine polynomial.
If the wave front error energy is constant, the RMS  cannot be used
to comprehensively reflect its dynamic performance. Therefore, the
SlopeRMS is applied to address this problem:

 ̊ = A sin (2�fx) (3)

with
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For the standard sine polynomial in Eq. (3), the wave front error
is constant, i.e. RMS˚ = A. Its SlopeRMS can be expressed by Eq. (6):

 ̊ =
√

2A sin (2�fx) (5)

slopeRMS =
√

2�fA(2) (6)

It is generally assumed that the wave front error is a linear com-
bination of two standard sine polynomials, as illustrated by Fig. 2,
and its SlopeRMS can be expressed as follows:

 ̊ = ˛
√

2A sin (2�fx) + ˇ
√

2A sin (2�fx)

slopeRMS2 =
(√

2˛2 + 8ˇ2�Af
)2

= ˛22f 2A2 + ˇ28f 2A2

An extension of this construction to rank N yields:

slopeRMS2 =
N∑
i

c2
i slopeRMS2

i (7)

Fig. 2. Illustration of the multiplied wave front error.

This suggests that, if the wave front error is expressed by a
standard orthogonal basis such as a standard sine polynomial,
every item’s SlopeRMS can be calculated individually, with the total
SlopeRMS then obtained by summation. In the actual engineering
application, some item’s SlopeRMS can be first calculated as well,
and then the total SlopeRMS can be obtained.

2.2. Ideal surface figure and Wiener process

For the surface figure of a reflective mirror, even for an abso-
lutely ideal surface, the measurement instrument will produce an
unavoidable error that will affect the mirror surface data; on the
other hand, because of other uncontrollable factors (pressure disc
jitter, thermal motion of magnetron fluid particles, random motion
of beam particles), the actual surface figure will contain irregular
fluctuations after the mirror has been polished.

The mathematical model of the Wiener Process was proposed by
Einstein to analyze Brownian movement, essentially capturing the
irregular movement by using a set of mathematical rules. This paper
will analyze the mirror surface figure by referring to the Wiener
process.

According to the basic assumptions of the Wiener process, in the
measurement range, the mirror surface slope is zero at the starting
point, whereas the surface slope has the following properties:

(1) Each coordinate component of the mirror surface slope
w(d1) − w(u1), w(d2) − w(u2), . . ., w(dn) − w(un) is indepen-
dent. For one of the components, it is denoted as w(l),
while for arbitrary mutually disjoint regions, it is denoted as
[d1, u1) , [d2, u2) , . . ., [dn, un).

(2) The ideal error should be symmetrically distributed, so that
E
{

w(l)
}

= 0.
(3) The w(l + �)  − w(l) distribution does not depend on l. Fur-

thermore, �2(�) = E
{

(w(l + �)  − w(l))2} exists and is the
continuous function of �.  As a result
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Then,

�2 (l + s) = E
{

[w (l + s) − w (l) + w (l) − w (0)]2}
= E

{
[w (l + s) − w (l)]2} + E

{
w2 (l)

}
= �2 (s) + �2 (l)

(10)

�2 (l) = Cl (C > 0) (11)
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and

eiv ≈ 1 + iv − v2

2
(13)

Therefore:

˚ (l + s, �) − ˚ (l, �)
s

≈ 1
2
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If s → o, then
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Since ˚ (0, �) = 1
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