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In  this  paper,  the  optical  soliton  solutions  are  obtained  for the  modified  Korteweg  de  Vries-type  equation
and  the  dissipative  (2+1)  dimensional  Ablowitz–Kaup–Newell–Segur  (AKNS)  equation.  The  mathematical
techniques  used  to obtain  the soliton  solution  is  the  ansatz  method.
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1. Introduction

Optical solitons and solitary waves are most important branches
of study in the field of nonlinear waves. In particular, opti-
cal solitons are pulses that act as information carriers through
optical fibers for trans-continental and trans-oceanic distances.
These solitons form the fabric of our daily lives in the Internet
word and other forms of global electronic communications across
trans-continental and trans-oceanic distances. The results of such
research will always lead to the bleeding edge technology in this
field. There have been a lot of research activities in this area. A
plethora of papers has been published in this field for the past few
decades [1–5].

The construction of exact traveling wave solutions of nonlin-
ear evolution equations (NEEs) is one of the most important and
essential tasks in nonlinear science, since these solutions will
very well describe various natural phenomena, such as vibrations,
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solitons, and propagation with a finite speed. The rapid develop-
ments of nonlinear sciences, a wide range of straightforward and
effective methods have been introduced to obtain traveling wave
solutions of NEEs in [6–14].

The integrability aspect and exact solutions will be the focus of
this paper. The aim is to extract dark soliton solution to the NEEs.
While there are several integration tools that are available to solve
such problems, this paper will address the ansatz approach. This is
indeed a powerful as well as popular integration architecture that
has gained fame in the past few years. The computer symbolic sys-
tems such as Maple and Mathematica allow us to perform merciless
and unforgiving calculations.

2. The modified Korteweg de Vries-type equation

The mKdV-type equation is given by [15]

uuxxt − uxuxt − 4u3ut + 4uuxxx − 4uxuxx − 16u3ux = 0, (1.1)

where u is a real-valued scalar function, t is time and x is a spatial
variable. In [16], Wazwaz found a variety of travelling wave solu-
tions such as kinks, solitons, peakons, periodic, etc. this equation.
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Bogning studied by the Bogning–Djeumen Tchaho–Kofané method
to look for all solutions of Eq. (1.1) [17].

In order to start off with the solution hypothesis, the following
ansatz is assumed [18–28],

u(x, t) = �tanhp �, (1.2)

and

� = �(x − vt)  (1.3)

where the � and � are the free parameters, and v is the velocity of the
soliton. The exponent p is also unknown. These will be determined

From Eqs. (1.2) and (1.3), we have:

uuxxt = −pv�2�3

⎧⎨
⎩

(p − 1)(p − 2)(tanh2p−3 � − tanh2p−1 �)

+(p + 1)(p + 2)(tanh2p+1 � − tanh2p+3 �)

+2p2(tanh2p+1 � − tanh2p−1 �)

⎫⎬
⎭ , (1.4)

u3ux = p�4�{tanh4p−1 � − tanh4p+1 �}, (1.5)

u3ut = pv�4�{tanh4p+1 � − tanh4p−1 �}, (1.6)

uxuxx = p2�2�3

{
(p − 1) tanh2p−3 � − (3p  − 1)tanh2p−1 �

+(3p + 1)tanh2p+1 � − (p + 1)tanh2p+3 �

}
,

(1.7)

uuxxx = p�2�3

{
(p − 1)(p − 2)tanh2p−3 � − [2p2 + (p − 1)(p − 2)]tanh2p−1 �

+[2p2 + (p + 1)(p + 2)]tanh2p+1 � − (p + 1)(p + 2) tanh2p+3�

}
,

(1.8)

uxuxt = vp2�2�3

{
−(p − 1)tanh2p−3 � + (3p  − 1)tanh2p−1 �

−(3p + 1)tanh2p+1 � + (p + 1)tanh2p+3 �

}
,

(1.9)

where � = �(x − vt).  Substituting Eqs. (1.4)–(1.9) into Eq. (1.1), we
obtain:

−pv�2�3

⎧⎨
⎩

(p − 1)(p − 2)(tanh2p−3 � − tanh2p−1 �)

+(p + 1)(p + 2)(tanh2p+1 � − tanh2p+3 �)

+2p2(tanh2p+1 � − tanh2p−1 �)

⎫⎬
⎭

−vp2�2�3

{
−(p − 1)tanh2p−3 � + (3p − 1)tanh2p−1 �

−(3p  + 1)tanh2p+1 � + (p + 1)tanh2p+3 �

}
−4pv�4�{tanh4p+1 � − tanh4p−1 �}

+4p�2�3

{
(p − 1)(p − 2)tanh2p−3 � − [2p2 + (p − 1)(p − 2)]tanh2p−1 �

+[2p2 + (p + 1)(p + 2)]tanh2p+1 � − (p + 1)(p + 2)tanh2p+3 �

}

−4p2�2�3

{
(p − 1)tanh2p−3 � − (3p  − 1)tanh2p−1 �

+(3p + 1)tanh2p+1 � − (p + 1)tanh2p+3 �

}
−16p�4�{tanh4p−1 � − tanh4p+1 �}

= 0.

(1.10)

Now, from (1.10) equating the exponents of tanh 4p+1 � and
tanh 2p+3 � gives,

4p + 1 = 2p + 3, (1.11)

so that

p = 1. (1.12)

Fig. 1. The exact solution u1,2(x, t) for Eq. (1.1) when p = 1, � = 1, v = 1.

It needs to be noted that the same value of p is yielded when
the exponents pair 4p − 1 and 2p + 1 is equated with each other.
Setting their respective coefficients to zero yields a set of algebraic
equations:

p(p + 1)(p + 2)v�2�3 − vp2(p + 1)�2�3 − 4pv�4�

−4p(p + 1)(p + 2)�2�3 + 4p2(p + 1)�2�3 + 16p�4�

= 0,

(1.13)

−p(p + 1)(p + 2)v�2�3 − 2p3v�2�3 + vp2(3p + 1)�2�3

+4pv�4� + 4p[2p2 + (p + 1)(p + 2)]�2�3

−4p2(3p  + 1)�2�3 − 16p�4�

= 0,

(1.14)

which gives after some calculations and with Eq. (1.13) or (1.14)
with (1.12) also we get

� = ∓�. (1.15)

Hence, finally, the 1-soliton solution to (1.1) is given by

u1,2(x, t) = � tanh(∓�(x − vt)), (1.16)

which exist provided that v /= 4 (Figs. 1 and 2).

3. The dissipative (2+1) dimensional AKNS equation

In this section, we present the dissipative (2+1) dimensional
AKNS equation [29], u = u(x, y, t) and Rx × Ry × Rt → R,

4uxt + uxxxy + 8uxyux + 4uxxuy + ˛uxx = 0, (2.1)

where  ̨ is a constant, and the coefficient  ̨ /= 0, shows that the
system has dissipative effect. Some solutions of Eq. (2.1) have been
obtained by using multidimensional Riemann theta function, sim-
plified form of the bilinear method, further improved extended
homoclinic test approach (EHTA) [29–31].

Let y = x,  ̨ = 0, then (2.1) can be reduced to the
Ablowitz–Kaup–Newell–Segur (AKNS) equation. Eq. (2.1) has
been studied in detail by many researchers and obtained various
exact solutions which include hyperbolic functions, the trigono-
metric functions and the rational functions. For example Liu
applied the Bell polynomials to study the integrability [32], like the
BT and the Lax pair. Bruzon et al. studied the AKNS equation and
derived some explicit solutions using the classical Lie symmetry
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