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a  b  s  t  r  a  c  t

The  properties  of  metal-cladding  nano-size  optical  fiber are  investigated  using  a new  implementation
of  finite-difference  time-domain,  in which  the amendment  form  of Drude  is  used.  The  results  reveal
that  the  thickness  of Ag-film  greater  than  110  nm  is enough  to  shield  the  interference  between  nano-
size  fibers  when  the wavelength  of  incident  light  is 632  nm.  This  proves  that the  metal-cladding  nano
fiber  has  stronger  tight-confinement  ability  than the  air-cladding  nano  fiber.  Meanwhile,  although  the
confinement  ability  of  metal-cladding  non-uniform  fiber  declines  slightly  with  the  angle  ˛ between
fiber  surface  and  horizontal  plane,  the  metal-cladding  fiber  can  solve  the  problem  of  light  energy  loss
caused  by  diameter  non-uniformity  in transmission  process  greatly.  The  experimental  results  reveal
that  metal-cladding  nano-size  optical  fiber  can  improve  transmission  efficiency  greatly.  The  behavior
of metal-cladding  nano  fiber demonstrated  may  provide  actual  reference  value  for  the  development  of
optical  applications  of nano  fiber.

©  2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In the past few decades, dielectric optical waveguides with
widths or diameters from micrometers to millimeters used as
transmission medium or components of optoelectronic devices
have been widely used in the field of optical communication, opti-
cal sensing and optical power delivery systems [1–3]. There is
a growing research interest in optical circuits at the nanometer
scale for future integration of optical optoelectronic and electronic
devices. For this goal, however, the typical dimensions of conven-
tional dielectric waveguides are dictated by diffraction, therefore
limiting dense integration. Subwavelength-diameter silica wires
are potential candidates for nanoscale optical elements with sizes
much smaller than the diffraction limit.

Nano-size optical fiber as one of the most important integrated
photonic devices is used as sensors [4,5], nanowire lasers [6],
low-loss light transmission medium [7] and so on. Recent studies
have shown that [8], the diameter of air-cladding nano-size opti-
cal fiber should be smaller than light wavelength for single-mode
operation. For smaller diameters, more light propagates outside
the core as an evanescent wave. Evanescent wave propagation is
extremely useful for enhancing the performance of devices such
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as optical coupling. Modeling of evanescent coupling have wide
applications, such as power division, all fiber interferometric sen-
sors [9,10]. However, because of strict requirements on surface
roughness and diameter uniformity, the fabrication of the low-
loss fibers with subwavelength diameters still remains challenging
[11–14]. Until 2003, the silica wires with diameters of 50–550 nm
reported have much better uniformity of diameter and surface
smoothness [15].

However, in most cases, a real wire could not be ideally uniform,
especially when the width or diameter of the waveguide is very
small [8]. In order to overcome the problem of light energy loss
of transmission process, we  coat a high reflectivity metal film on
surface of the wires. However, in addition to be studied as probes
for scanning near-field optical microscopy (SNOM) [16] and optical
sensors [17], metal-cladding nanofiber seldom be investigated in
recent years.

The finite difference time domain (FDTD) technique has
been widely used to analyze electromagnetic phenomena. Yee
introduced an FDTD scheme applied to Maxwell’s equations in
1966 [18]. Recently, with the progress of computational work, the
numerical analysis has come to be recognized as a powerful tool for
computing the optical properties of arbitrary, irregular structures
with subwavelength features. Luebbers has presented an efficient
method to include frequency-dependent materials in FDTD cal-
culations based on recursive evaluation of the convolution of the
electric field and susceptibility [19].
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In this paper, using FDTD method presented by Luebbers, we
investigated the guiding properties of metal-cladding nanofiber in
detail. In order to improve the accuracy of simulation, we use the
amendment form of Drude model which has never been reported
in FDTD method as far as we know. It is found that the results repro-
duce the expected values, indicating that light energy is tightly
confined inside metal-cladding nanofiber. The experimental results
illustrate that metal-cladding nanofiber can reduce loss caused by
diameter non-uniformity. The results are actual reference value for
the development of new type of fiber equipments.

2. Approach

2.1. Discussion about metal frequency-dependence model

The traditional FDTD method will be no longer applied due to
optical properties of metal. Choosing a suitable metal dispersion
model which can improve the accuracy of computational results is
one of key steps of simulation. Now some typical metal dispersion
models are commonly used, such as Debye model [20], Lorentaz
model, Drude model [21], Lorentaz–Drude model and the amend-
ment form of each model. Lorentaz model and Drude model are
widely used.

Lorentaz model based on classical physics was  presented by
physicist Lorentaz in 19th century. For metal, it is assumed that
the elastic force between electric charges is generated by electric
field; free electrons are attracted or bounded through the elastic
force. The model is fully capable of describing the nature of metal;
however, experiments prove that, if we use the model to achieve
the desired accuracy, more intrinsic frequency should be consid-
ered [22]. Computational efficiency will decline with the number
of intrinsic frequency increasing. In order to achieve higher accu-
racy, we must cost a lot of computers resources and time. Therefore,
choosing the model is not wise for FDTD calculation.

Drude model is a simplified form of Lorentaz model. It is
assumed that the action of electrons complies with Newton’s laws
under electromagnetic fields, and scatter to other directions in the
elastic collision process. However, the accuracy of the model is not
high [23]. In order to improve the accuracy of simulation, we  use
the amendment form of Drude model. Dispersion equation is given

ε (ω) = 1 − ω2
p

jω�c + ω2
= ε (∞) −  � (ω) (1)

where ωp is the plasma frequency, �c is the collision frequency,
ε(∞) is infinite-frequency dielectric constant and equal to 1, �(ω)
is susceptibility. Experiments proved that the amendment form of
Drude model can get very high accuracy in the target band [24,25],
and it is simplified easily in FDTD calculation.

Take silver for example, its parameters are set as ωp = 9.5 eV,
�c = 0.0987 eV [27]. According to Fig. 1, the simulation results
are agreed with the measured values of the complex dielectric
constants, when ε(∞) is 5.5. Fig. 1 also shows that when wave-
length is greater than 1200 nm,  the dielectric constants obtained
from amendment form of Drude model are not too consistent with
the measured values; while in the visible band, the values of the
model fit well with the measured values.

2.2. Discussion about the derivation of FDTD method for metal

In dispersive materials in which the real part of the electric per-
mittivity (ε) is negative, and for monochromatic light dispersive
effects must be taken into account, recursive convolution (RC) FDTD
is used. The relationship of electric displacement and electric field
can be described as [28]

D (ω) = ε0ε (ω)E (ω) (2)

400 60 0 80 0 10 00 120 0 140 0 16 00
-150

-130

-110

-90

-70

-50

-30

-10

10

30

50

Wavelength  (nm )

D
ie

le
ct

ri
c 

C
o

n
st

a
n

t

Re(εε)

Im(εε)

Fig. 1. The complex dielectric constants of Ag. Solid and dash lines represent the
real part and imaginary part of the results obtained from the amendment form of
Drude model, respectively; filled black circles and five-pointed star represent the
real part and imaginary part of measured dielectric constants, respectively [26].

where the dielectric constants are obtained from the amend-
ment form of Drude model. The time-domain behavior of electric
displacement is obtained by taking the inverse Fourier transform
on both sides of Eq. (2), D(t) is given by

D (t) = ε0ε (t) ×  E (t) (3)

�(ω) of Eq. (1) is obtained using the inverse Fourier transform of
the typical signals [29].

�(t) = F−1 [� (ω)]
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(4)

where U(t) is a unit step function.
Eq. (3) is discretized in keeping with the FDTD time-stepping

scheme. We  assume that �t  is the minimum time step, n repre-
sents the total time steps corresponding to t, t = n�t. Over any single
interval �t, the electric field E can be considered to be constant.
Using Eqs. (1), (3) and (4), the electric displacement current can be
expressed as

D (t) = ε0ε∞ı (t) ×  E (t) − ε0� (t) ×  E (t)

= ε0ε∞En − ε0

t∫
0

� (�)E (t  − �) d�

= ε0ε∞En − ε0 n

(5)

where

 n =
n−1∑
m=0

En−m
ω2
p

�2
c

[�t�c − (e�c(m+1)�t − e�cm�t)] (6)

For passive components, the Maxwell equations are expressed
as

∇ × �E = −�∂
�H
∂t

(7)

∇ × �H = ∂ �D
∂t

(8)

It is assumed that all the physical parameters are independent
on z axis in two  dimensional coordinate, then ∂/∂z = 0. In the TM
mode, Ex = Ey = Hz = 0, �x  and �y  represent the space step in the
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