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a  b  s  t  r  a  c  t

We  propose  a hierarchical  (BV,  G) variational  decomposition  model  for  multiscale  texture  extraction  in
this  paper,  which  can  offers  a  hierarchical,  separated  representation  of image  texture  in  different  scales.
The  proposed  hierarchical  decomposition  is  obtained  by  replacing  the  fixed  scale  parameter  of the  A2BC
model  with  a varying  sequence.  Some  properties  of  this  hierarchical  decomposition  are  presented  and
its convergence  is proved.  We adopt  Euclidean  projection  algorithm  to solve  this  hierarchical  decompo-
sition  model  numerically.  In  addition,  we  use  this hierarchical  decomposition  to  achieve  the multiscale
texture  extraction.  The  performance  of the  proposed  model  is  demonstrated  with  both  synthetic  and  real
images.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Texture is a primary visual cue for pattern recognition and
is connected with the human visual perception of coarseness or
smoothness of image features. Texture gives us information about
the spatial arrangement of color or intensities in an image or
selected region of an image. When it is defined in a quantitative
sense, texture is a property that relates to the nature of the peri-
odic variability of pixel values. A visually smoother texture would
contain only slight changes in digital number (DN) values over an
area, while a visually coarse texture would contain many abrupt
changes in DN values over an area.

Texture analysis has a wide range of applications such as remote
sensing, medical diagnosis, document analysis, target detection,
image segmentation, image classification, and so on. Of all these
applications of texture analysis, texture extraction may  be the most
important preliminary work. By far there are many different meth-
ods used to extract textural information from images, which can be
categorized into four major classes [1,2]: characterized as statisti-
cal (e.g. [3,4]), structural (e.g. [5,6]), model-based (e.g. [7–13]) and
frequency-based (e.g. [14–23]).

Recently, an image decomposition method based on variational
theory has received more and more attention and has been studied
by many researchers (e.g. [24–38]). These decomposition meth-
ods can actually be used to achieve the texture extraction. Given
an image function f (x, y) :  ̋ ∈ R

2 → R  where  ̋ is an open,
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bounded and connected subset, the variational decomposition of
f, f = u + v, can be obtained by minimizing an energy functional, in
which u represents cartoon or structure component of f, while v rep-
resents oscillatory component consisting of scale repeated detail,
i.e. texture, which is what we need. We  here give some classical
examples of image decomposition using functional minimization,
which are most related to our present work.

A celebrated decomposition is obtained by the total variation
(TV) minimization model by Rudin, Osher and Fatemi (ROF) [34]
for image denoising, in which an image f ∈ L2

(
˝

)
is split into u ∈

BV(˝)  and v ∈ L2
(

˝
)

:

(u, v) = arg inf
{

|u|BV(˝) + �‖v‖L2(˝), f = u + v
}

, (1)

which yields the so-called
(

BV, L2
)

decomposition. Here, � > 0 is a
tuning parameter, and |u|BV(˝) is the BV-seminorm of u, defined by

|u|BV(˝) =
∫

˝

|∇u| = sup

{∫
˝

udiv(�) : � ∈ C1
c

(
˝;  R

2
)

,

∥∥�
∥∥

L∞(˝)
≤ 1

}
,

where ∇u is the generalized derivative of u,
∥∥�

∥∥
L∞(˝)

=
ess sup

√
�2

1 + �2
2 with � = (�1, �2). Model (1) is convex and easy

to solve in practice. In addition, the function u ∈ BV
(

˝
)

allows
for discontinuities along curves, thus edges and contours can be
preserved in the restored image u.
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However model (1) has some limitations. For instance, the struc-
ture and BV pieces of f are often sent to the component v for any �
[31,32,37], so it does not represent well oscillatory details (such as
texture) since an oscillatory function doesn’t have small L2-norm.
Meyer [32] suggested using a weaker norm instead of L2-norm for
the oscillatory component, and this can be done by using gen-
eralized function. One of his choices is to use the dual norm of
BV-seminorm for the oscillatory components. However, there is no
known integral representation of a continuous linear functional on
BV

(
˝

)
. To address this problem, Meyer [32] used a slightly larger

space G
(

˝
)

= W−1,∞ (
˝

)
to approximate the dual of BV

(
˝

)
.

Definition 1. G
(

˝
)

consists of distributions v which can be writ-
ten as

v = ∂xg1 + ∂yg2 = div (g) , g ∈ L∞ (
˝;  R

2
)

endowed with the norm

‖v‖G(˝) = inf
{

‖g‖L∞(˝) : v = div(g), g ∈ L∞ (
˝;  R

2
)}

,

where ‖g‖L∞(˝) = ess sup
√

g2
1 + g2

2 .

A function belonging to G
(

˝
)

may  have large oscillations and

nevertheless have a small G-norm. Thus the norm on G
(

˝
)

is
well-adapted to capture the oscillations of a function in an energy
minimization method. Using G

(
˝

)
to model oscillatory compo-

nent v, Meyer [32] introduced the following (BV, G) variational
decomposition model:

inf
u ∈ BV(˝),v ∈ G(˝)

{
|u|BV(˝) + �‖v‖G(˝), f = u + v

}
. (2)

In theory, this decomposition model can better extract texture.
However, it cannot be directly solved in practice due to the nature
of the G-norm [24,25,33,37,38], for which there is no standard
calculation of the associated Euler–Lagrange equation. Vese and
Osher [37,38] first overcame this difficulty by replacing the space
G

(
˝

)
with Gp

(
˝

)
= W−1,p

(
˝

)
with 1≤ p < + ∞.  Then, the (BV, G)

decomposition model (2) is approximated by the following mini-
mization problem:

inf
u ∈ BV(˝),v ∈ Gp(˝)

{
|u|BV(˝) + �

∥∥f − u − v
∥∥2

L2(˝)
+ �‖v‖Gp(˝)

}
, (3)

where �, � > 0 are tuning parameters, ‖v‖Gp(˝) =
inf

∥∥∥√
g2

1 + g2
2

∥∥∥
Lp(˝)

with v = div(g1, g2). The first term insures

that u ∈ BV
(

˝
)

, the second gives that f ≈ u + v, and the third

term is a penalty on the norm in Gp

(
˝

)
of v. Clearly, if �→ ∞

and p→ ∞,  this model is formally an approximation of the (BV, G)
model (2) proposed originally by Meyer. In this decomposition,
the image f is discomposed into three components, f = u + v + r
with u ∈ BV

(
˝

)
, v ∈ Gp

(
˝

)
and r ∈ L2

(
˝

)
.

Later on, Osher, Solé and Vese [33] proposed a simplified approx-
imated method corresponding to the case p = 2 in (3). And then, the
functional space G

(
˝

)
is replaced by the dual space H−1(˝) of

H1
0(˝). The decomposition model is defined as

inf
u ∈ BV(˝),v ∈ H−1(˝)

{
|u|BV(˝) +  �

∥∥f − u
∥∥2

H−1(˝)

}
, (4)

where
∥∥f − u

∥∥
H−1(˝)

=
∥∥∇�−1 (f − u)

∥∥
L2(˝)

.  This minimization

problem has been solved using a fourth-order non-linear partial
differential equation in [33], and gives a 2-tuple decomposition,
f = u + v, such that u ∈ BV

(
˝

)
and v ∈ H−1

(
˝

)
.

Aujol, Aubert, Blanc-Féraud and Chambolle (A2BC) [25,26] stud-
ied model (3) and (4), and pointed out that these two  models are

both not the best approximations to Meyer’s (BV, G) decomposition
theoretically. They proposed another approach to approximate it,
stated as the following minimization problem:

inf
u ∈ BV(˝),v ∈ G�(˝)

{
J (u) + �

∥∥f − u − v
∥∥2

L2(˝)
+ J∗

( v
�

)}
, (5)

where �, � > 0 are tuning parameters, G�

(
˝

)
={

v ∈ G
(

˝
)

: ‖v‖G(˝) ≤ �
}

, J (u) = |u|BV(˝) and J∗ (v) is the

Legendre–Fenchel transform of J (u).  Since J (u) is one homogeneous
(i.e. J (�u) =  �J (u) for u ∈ BV

(
˝

)
and � > 0), J∗ (v) is actually the

indicator function of the closed convex set G1 =
{

v : ‖v‖G(˝) ≤ 1
}

,

i.e.,

J∗ (v) = sup
u ∈ BV(˝)

{
〈u, v〉 − J (u)

}
= �G1 (v) =

{
0 if v ∈ G1

+∞ otherwise
.

Model (5) can be solved by the projection algorithm in the dual
framework proposed by Chambolle [39]. In addition, Aujol et al.
state that as �→ + ∞,  then model (5) coincides with Meyer’s (BV,  G)
model.

Here, we would like to list some other related works on solving
(BV, G) decomposition numerically. Le and Vese [31] introduced
the Dirac function in (3) to compute the G1-norm of v. Aujol and
Chambolle [40] used projection algorithm and dichotomy to com-
puter G-norm. Weiss, Aubert and Blanc-Féraud [41] proposed an
efficient algorithm based on Nesterov scheme [42] for TV minimi-
zation, which was  used to solve (BV, G) model.

The models mentioned above are examples for a larger class of
variational decompositions with fixed scales; the scale parameters
in these models are fixed. If they are used for texture extrac-
tion, one can only achieve a fixed scale texture extraction. It has
been argued that a human visualizes a scene in multiple scales
[43,44]. The multiscale approaches (e.g. [43–48]) are appropriate
for texture analysis because a single scale may  be not a perfect
simulation of the human visual perception on texture elements.
In order to achieve reliable texture information in different scales,
large-scale and small-scale behaviors should both be investigated
and incorporated appropriately. Thus, a natural way to address this
problem is the multiscale analysis. Frequency-based methods such
as Gabor filter [15–17] and wavelet transform [18–20], trying to
characterize texture through filter responses directly, can produce
a good multiscale texture extraction. These two  multiscale tech-
niques transforming images into a hierarchical representation can
achieve a good simulation of the human visual perception on tex-
ture elements.

In [46], we  proposed a multiscale texture extraction method
based on variational decomposition, where the

(
BV, Gp

)
decom-

position model (3) proposed by Vese and Osher [37,38] is used to
extract texture. It is known that the space of Gp is only a rough
approximation of G proposed originally by Meyer. So in this paper,
we propose a hierarchical (BV,  G) variational decomposition based
on the A2BC model, and then we  use it to achieve multiscale tex-
ture extraction. We here adopt the A2BC model because it is the best
approximation to Meyer’s (BV,  G) decomposition theoretically. In
our hierarchical decomposition, the scale parameter � in the A2BC
model, used to measure the texture, is not fixed, but varies over
a sequence of binary scales. So, this hierarchical decomposition
enables us to capture successively the oscillation of f, which lies
in the intermediate scale spaces between L2

(
˝

)
and G

(
˝

)
. Then,

the extracted texture from f is not predetermined, but resolved in
terms of layers of intermediate scales.

It should be pointed out that Tadmor et al. have proposed
the hierarchical

(
BV, L2

)
decomposition (see [36,49]) and the
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