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a  b  s  t  r  a  c  t

With  computation  models  playing  an  ever  increasing  role  in  the advancement  of  science,  it is  important
that  researchers  understand  what  it means  to model  something;  recognize  the  implications  of  the con-
ceptual,  mathematical  and  algorithmic  steps  of  model  construction;  and  comprehend  what  models  can
and cannot  do.  Here,  we  use examples  to show  that  models  can  serve  a wide  variety  of roles,  includ-
ing  hypothesis  testing,  generating  new  insights,  deepening  understanding,  suggesting  and  interpreting
experiments,  tracing  chains  of  causation,  doing  sensitivity  analyses,  integrating  knowledge,  and  inspiring
new approaches.  We  show  that  models  can  bring  together  information  of different  kinds  and  do  so  across
a range  of  length  scales,  as they do in  multi-scale,  multi-faceted  embryogenesis  models,  some  of  which
connect  gene  expression,  the  cytoskeleton,  cell  properties,  tissue  mechanics,  morphogenetic  movements
and phenotypes.  Models  cannot  replace  experiments  nor  can  they  prove  that particular  mechanisms  are
at work  in  a given  situation.  But they  can  demonstrate  whether  or not  a proposed  mechanism  is suf-
ficient  to  produce  an  observed  phenomenon.  Although  the  examples  in  this  article  are taken  primarily
from  the  field  of  embryo  mechanics,  most  of the arguments  and  discussion  are  applicable  to  any  form  of
computational  modelling.
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1. Introduction

Few things in the universe are as inspiring to behold as living
systems, and one of the recurring mysteries about them is how their
remarkable characteristics arise from interactions between rela-
tively simple building blocks. For example, “How can collections of
cells each of which is able to take only one of two states, on and off,
allow human minds to think complex, meaningful thoughts?” or
“How do the various organic and inorganic players in an ecosystem
interact so as to produce long-term stability?” or “How do embryos
acquire their increasingly complex and elegant forms?” These are
profound mysteries.

As medical researchers and biologists strive to address ques-
tions of this kind with increasing rigour, they require tools that will
allow them to gain insights into the complex interactions that occur
in these systems, and one of the best currently-available tools is
computational modelling [1–5]. There are many reasons that com-
putational models are so effective in this setting, and a primary goal
of this article is to highlight them, while at the same time recogniz-
ing their limitations. This article also aims to provide insight into
how models work in general and show some of the specific ways
that they can be used in the context of biological systems, especially
those related to cell and tissue mechanics and embryology.

In general, the goal of a computational model is to replicate the
behaviour of the system it parallels and to do so based on actual,
known properties of the system components. Achieving this goal
may  require the model to span a range of length scales and incorpo-
rate information from multiple fields of endeavour. As this article
argues, models that achieve this challenging goal can serve as an
important complement to experimental and theoretical studies,
and can provide valuable knowledge.

Before the advent of computers, one could write force balance
equations describing equilibrium of forces at a single triple junction
and volume constancy equations for single cells. However, study-
ing interactions between meaningful numbers of cells by hand was
impractical due to the large number of equations that had to be
constructed and solved. To make matters worse, as the cells moved,
their geometries changed and the equations had to be re-derived
and re-solved for each small increment of motion.

When computers became available to university researchers in
the early 1970s, they ushered in a revolution. With the advent of
computers, code could be written to automatically construct and
solve these equations and to do so repeatedly for multiple times
steps. The time course of the cell movements could then be pre-
dicted and new things could be learned about how cells in model
aggregates behaved [1]. Thus, computers provided a new way  for
researchers to investigate interactions between different systems
elements.

Interest in the mechanics of cell–cell interactions was growing
at the time, and there was debate about the nature of cellular forces
and how they could drive collective phenomena such as cell sor-
ting and aggregate rounding [6,7]. Some of the earliest computer
programs were written to investigate the mechanics of cell–cell
interactions and thereby tackle these intriguing questions. Even
though many of those early studies were rudimentary by current
standards, they were instrumental in defining the field of compu-
tational modelling and they unlocked important mysteries about
how cells interact with each other [1].

Researchers quickly realized that they could change the proper-
ties of the virtual cells in their models and the rules that governed

their interactions at will, and that by doing so they could test
hypotheses, understand which features gave rise to particular out-
comes and carry out almost any kind of virtual experiment that
crossed their minds. Over time, the algorithms they used improved
and became more reliable, stronger connections were forged
between models and real-world experiments, and modelling ulti-
mately entered the mainstream of biology. Indeed, computational
models have now become a standard tool for assessing proposed
new biological mechanisms, often considered essential even when
the associated experimental evidence is strong.

Many of the computational advances needed for these models
came out of the fields of engineering and physics. The reason is
that during the 1970s, 80s and 90s, computational models came to
play an increasingly central role in various branches of engineering,
especially its structural, aerospace, mechanical, electromagnetic,
fluid dynamics, chemical, control and electrical domains [8]. It
was in these contexts that extensive algorithm development took
place and that the mathematical theory needed to bring confidence
to the calculations was developed. In engineering and physics, a
particular technique called the finite element method (FEM) took
shape during this period and became the most widely-accepted,
general-purpose framework for studying phenomena that involve
non-trivial geometries. Many modern cell and tissue models, as
well as other kinds of models, draw on conceptual and computa-
tional developments associated with this method.

A large variety of computational models arose for studying cells
and their interactions during this time, including lattice (Potts), ver-
tex, centric, and finite element models (reviewed by Brodland [1]),
and since then, even more models have arisen [2,3,9–13]. Multi-
ple approaches continue to be used because each one has its own
inherent strengths and challenges. In addition, several large com-
putational packages have become generally available, including
CompuCell, The Virtual Cell and Smoldyn [14–16].

As this article discusses, computational models are based on
specific conceptual, mathematical and algorithmic assumptions,
and while these presuppositions can bring power and efficiency
to the models, they can also introduce differences between the
model and the real world that it endeavours to parallel. Determin-
ing which model is most appropriate in a particular setting will
depend on the focus and goals of the study, with options including
deterministic versus stochastic approaches, agent (particle) versus
continuum schemes, single- versus multiple-scale approaches and
forward versus inverse approaches.

2. The process of modelling

2.1. What does it mean to model something?

In order to better understand what it means to model some-
thing, consider Fig. 1, which shows a rectangular box across the top
and represents the physical world, where a particular real embryo
exists. For purposes of this illustration, we will consider the process
of neurulation in amphibian embryos. An axolotl embryo at the
start of this process is shown in the upper left corner of the figure.
Over time, its neural plate, which consists of most of the visible
tissue, rolls up to form a tube – the precursor of the spinal cord and
brain – as shown in the other frames in the upper box. The box at
the bottom represents the virtual or “in silico” world, and there one
hopes that a corresponding model embryo is undergoing the same
processes. Only when rendered using computer graphics does the
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