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a  b  s  t  r  a  c  t

Evolved  gene  networks  are  constrained  by natural  selection.  Their  structures  and  functions  are  conse-
quently  far  from  being  random,  as  exemplified  by the  multiple  instances  of  parallel/convergent  evolution.
One  can  thus  ask  if features  of  actual  gene  networks  can  be recovered  from  evolutionary  first  principles.
I  review  a method  for in  silico  evolution  of  small  models  of  gene  networks  aiming  at  performing  pre-
defined  biological  functions.  I summarize  the  current  implementation  of the  algorithm,  insisting  on  the
construction  of a  proper  “fitness”  function.  I illustrate  the  approach  on  three  examples:  biochemical
adaptation,  ligand  discrimination  and  vertebrate  segmentation  (somitogenesis).  While the  structure  of
the  evolved  networks  is  variable,  dynamics  of  our evolved  networks  are  usually  constrained  and  present
many  similar  features  to actual  gene  networks,  including  properties  that  were  not  explicitly  selected  for.
In silico  evolution  can  thus  be  used  to  predict  biological  behaviours  without  a  detailed  knowledge  of  the
mapping  between  genotype  and  phenotype.

© 2014  The  Author.  Published  by Elsevier  Ltd.  This  is an  open  access  article  under  the  CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Like any complex emergent process, evolution combines
dynamics at different spatial and temporal scales, and for this
reason can be challenging to study and model mathematically.
Microevolution corresponds to changes of allele frequencies in
a population, over relatively “short” time-scales, and population
genetics has long been the central mathematical theory to study
microevolution [1]. Recent real-time experimental studies have

∗ Tel.: +1 514 398 1635.
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also advanced our understanding of microevolution, e.g. long-term
evolutionary experiments in the lab [2,3], artificial selection of com-
plex mechanisms (such as bacterial altruism [4]) or observation of
fast evolving systems (like the flu [5]).

Macroevolution, evolution of high order structures over long
time-scales, is more challenging to study. It is of course still impos-
sible to observe experimentally and thus can be studied only
indirectly. Most data come from retrospective studies of genomes
and fossils, having evolved over 4 billions years. Full access to
ancestral phenotypes and measures of ecological pressures are
impossible so that macroevolutionary mechanisms for apparition
of complex features (such as full-blown organs or signalling path-
ways) remain speculative. As a consequence, very different views
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coexist: for instance, while many biologists (like Stephen Jay Gould
[6]) think that evolved structures are historically contingent, others
(like Simon Conway-Morris [7]) have used spectacular examples
of convergent evolution to argue that solutions found by evolu-
tion are much more constrained than usually thought. Modern
experimental attempts include the study of evolutionary history in
conjunction to development (“evo-devo”), supported by genomic
studies [8].

But just like population genetics is the central theory underly-
ing microevolution, a quantitative theoretical framework would be
useful for macroevolutionary studies. In particular, one question
arising is the nature of constraints on evolvable biological func-
tions: given a complex phenotype, can we use some mathematical
theory to predict anything on the underlying gene networks? The
issue is that we do not have (yet) a proper formalism to answer
such questions: among other problems and despite recent advances
(see e.g. [9–11]) the nature of the mapping between phenotype
and genotype is still an open question. For this reason, we turn to
computational approaches and propose a generic in silico evolution
procedure to “predict” what kind of networks can evolve to perform
a given biological function [12,13]. In the following, I first describe
our method and then discuss three interesting case-studies.

2. Network implementation and algorithm philosophy

In this section, I summarize how we model gene networks and
their simulated evolution.

There are two levels in the algorithm: the individual level where
genotypes and phenotypes of individuals are defined and com-
puted, and the population level, where evolution is performed.

2.1. Individual level

In our approach, an individual genotype is a mathematical object
encoding dynamics of a gene network. Networks consist in bipartite
graphs. The first category of nodes is interacting components, typ-
ically proteins or DNA sequence. They are themselves connected
to the second category of nodes, corresponding to interactions.
A grammar of possible interactions is predefined, accounting for
various biochemistry, such as transcription, transcriptional regu-
lations, phosphorylations, protein–protein interactions. A network
behaviour (i.e. its phenotype) is modelled using ordinary differen-
tial equations. We use classical biochemical kinetics to account for
the various interaction, e.g. mass-action laws for protein–protein
interactions, or Hill functions for transcriptional interactions [14].

To be more specific, let us consider one example, similar to
one of the adaptive network evolved in [15]. A full-blown repre-
sentation of the network is displayed in Fig. 1A, and a simplified
representation of the same network in Fig. 1B. There are three
proteins (subsequently called S0, S1, S2) that we call ‘Species’. reg-
ulatory module, DNA are nodes used to model regulatory and
coding sequence of gene S1. Finally PPI is an interaction node cor-
responding here to a complexation between S0 and S1 into S2.

To this graph correspond differential equations. Equations are
automatically generated by the algorithm to account for the inter-
actions. For node S1, the regulatory module and DNA part here
simply encode a default basal transcription rate �. The PPI interac-
tion adds a non linear forward interaction term �S0S1 for complex
formation, and a linear backward term ˛S2 for complex dissocia-
tion. Finally, we assume that all species have a linear degradation or
dilution rate. For this case, the complete set of differential equations
for S1 and S2 thus is

Ṡ1 = � − ı1S1 − �S1S0 + ˛S2 (1)

Ṡ2 = �S1S0 − (  ̨ + ı2)S2 (2)

All parameters in these equations are randomly chosen and
selected by the algorithm.

In the present case, there is no equation for S0 because it is an
external Input, with a prescribed dynamics (here a sequence of
steps of random heights). Integration of networks dynamics under
control of this Input is performed. Fig. 1 illustrates dynamics of this
network for ı1 = 0. This makes the Output variable S2 adaptive, i.e.
after a change of Input value, its values changes before returning to
its initial value. This adaptive response can be quantified in various
ways, for instance by measuring the deviation from the baseline or
by quantifying how the stationary value of the Output depends on
the stationary value of the Input. These quantities can be used to
define a coarse-grained phenotype. From this phenotype, a fitness
or scoring function is computed by the algorithm and is later used
for selection (see below for a more detailed description of evolution
of adaptive behaviour corresponding to Fig. 1).

2.2. Population level

Our algorithm works very much like actual evolution and other
evolutionary algorithms: (1) it takes a population of genotypes;
(2) computes their phenotype and fitness as indicated above; (3)
selects and mutates networks; and (4) iterates this process over as
many generations as desired.

Selection is based on the network fitness. We  run the simula-
tions in a very elitist mode. At each generation, the worst half of
the networks (based on the fitness) is discarded. Then the best half
is ordered, kept, duplicated, and the duplicated half is mutated. To
ensure some population mixing even among the best networks,
we also systematically add some small random component in the
fitness.

Mutations consist in random modifications of the genotype, via
changes of either parameters or network topology (addition or
removal of nodes). It is important to stress at this stage that individ-
ual networks can grow with time, which is different from classical
genetic algorithms where genome size is fixed. On the one hand,
this prevents any simple implementation of genetic cross-over, but
on the other hand, network growth opens up the possibility of
dimensionality increase in phase-space and of evolution of new
combinatorics that could be crucial to implement new complex
dynamics.

Given our pre-defined grammar of interactions, each possible
evolutionary move is systematically computed at each generation
for each network, and actual mutations are randomly drawn. Indi-
vidual mutations are assumed to be Poisson processes, with a fixed
pre-defined rate. Typically, we choose rates so that the most prob-
able move is a change of kinetics, then second most probable move
is removal of nodes, and least probable move is addition of new
interactions. This fits the idea that most evolutionary moves are
neutral or deleterious, and that addition of new function should be
a priori rare.

The time and nature of the next mutation for a given network
is chosen using a Gillespie algorithm [16]. An evolutionary time
therefore needs to be defined. As networks grow, generation time
is dynamically changed so that the average number of mutations
per generation per individual is fixed (currently taken to one). This
implements an analogue of the “Drake’s rule”, the idea that the
mutation rate inversely scales with genome size [17]. This also pre-
vents uncontrolled explosion of network size that would naturally
occur given the combinatorial explosion of possible interactions as
networks grow.

2.3. Evolution of specific biological functions

A key aspect of any evolutionary computation is the choice of
scoring (or fitness) function. By analogy with energy minimization
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