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ARTICLE INFO ABSTRACT

Article history: Mathematical modeling of developmental signaling networks has played an increasingly important role

Available online 9 July 2014 in the identification of regulatory mechanisms by providing a sandbox for hypothesis testing and experi-
ment design. Whether these models consist of an equation with a few parameters or dozens of equations

Keywords: with hundreds of parameters, a prerequisite to model-based discovery is to bring simulated behavior into

Developmental biology agreement with observed data via parameter estimation. These parameters provide insight into the sys-
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tem (e.g., enzymatic rate constants describe enzyme properties). Depending on the nature of the model fit
desired - from qualitative (relative spatial positions of phosphorylation) to quantitative (exact agreement
of spatial position and concentration of gene products) - different measures of data-model mismatch are
used to estimate different parameter values, which contain different levels of usable information and/or

Morphogens

uncertainty. To facilitate the adoption of modeling as a tool for discovery alongside other tools such
as genetics, immunostaining, and biochemistry, careful consideration needs to be given to how well a
model fits the available data, what the optimized parameter values mean in a biological context, and how
the uncertainty in model parameters and predictions plays into experiment design. The core discussion
herein pertains to the quantification of model-to-data agreement, which constitutes the first measure
of a model’s performance and future utility to the problem at hand. Integration of this experimental
data and the appropriate choice of objective measures of data-model agreement will continue to drive
modeling forward as a tool that contributes to experimental discovery. The Drosophila melanogaster gap
gene system, in which model parameters are optimized against in situ immunofluorescence intensities,
demonstrates the importance of error quantification, which is applicable to a wide array of developmental

modeling studies.
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1. Introduction

Mathematical models of complex networks in development
exist in an “uncanny valley”; many models look and behave almost
like the natural systems they are designed to simulate, but they
display imperfections that make their predictions suspect. The dis-
parity between a model result and the actual system may be a
small yet systematic mismatch, the complete absence of frequently
observed experimental features, or the prediction of unviable con-
ditions (e.g., fatal pH) despite good agreement with experimental
data. This “uncanny valley” for models might suggest that modeling
is a distraction that interferes with experimental discovery because
the model attempts to show how the system works in quantita-
tive detail, yet models are always deficient. Among model-builders
it is understood that simulations will always be simplifications
incapable of reproducing all experimental behaviors; however,
imperfect models still promote greater understanding and have,
more recently, been informing experimental design and testing
assumptions when experiments are infeasible [1].

Central to modeling are the needs to quantify how well a model
agrees with experimental data and to identify where it might dis-
agree. Quantification of model-data agreement is determined by
an objective function that measures the “error” of the model; how-
ever there are many ways to measure the error and the choice of
objective to measure model-data differences depends on the type
of data, the type of model, and the question being asked. Herein
we review diverse objective functions for the calculation of model-
data error and identify each function’s strengths and weaknesses
in the context of developmental pattern formation by morphogens.

Mathematical models of varying complexity are used to repre-
sent diverse dynamic phenomena in the biological sciences. The
specific type of model determines both the type of data needed
to inform the model and the optimal objective functions to relate
the model to the data. A dynamic model describes change in the
system state over a time course of interest; it contains explicit
mechanistic descriptions of the system and rules for updating the
state of the system in time [2]. Independent of the mechanistic
description, the behavior of the model depends on the initial con-
ditions of the system (e.g., simulated molecular concentrations at
time zero). Developmental models often simulate spatially hetero-
geneous systems; in these cases the shape of the spatial domain
also affects outcome. Mechanistic dynamic models are parametric
[3]. In addition to the state of the system and its domain, param-
eters are constant values that define the behavior of the system
and often have biophysical interpretations. For example, binding
rate constants are parameters of receptor binding models [4,5]. To
determine the validity of a model, parameter estimation must be
used to bring the model into agreement with data [6]. This often
involves iteratively simulating the model with different parameter
values and comparing the resultant simulation to data. Parame-
ters that yield simulated values minimally different (or maximally
similar) to data are retained [6-8]. The difficulty of this parameter
search depends on the range each parameter is allowed to assume,

the number of parameters to be estimated, and the covariance of
parameters with model output [9].

Mechanistic models should not be confused with statistical
models (sometimes known as phenomenological models). Statis-
tical models (e.g., linear or logistic regression) quantify correlation
among observable data. This knowledge often proves useful in
hypothesis generation, but the predictive power of statistical mod-
els is limited to interpolation within the range of existing data
[10]. Conversely, mechanistic models encode suppositions about
the nature of the underlying system. As such, they may be used
to extrapolate beyond the range of current data and provide pre-
dictions given that the modeled mechanism is accurate. Mechanistic
models are the primary context for the comparison of fitness
metrics herein.

The quality of the model and the uncertainty of its predictions
depend on the type and quality of the data used for the training
and optimization of the model. Experimental data common in the
analysis of morphogen signaling systems may take several forms
depending on the nature of the assays used. Specifically, qualitative
dataencodes nonnumeric descriptors of the morphogen and targets
of interest; semi-quantitative data is predominantly ratiometric
such as the relative intensity of a stained molecule or intensity
of a western blot; and quantitative data provides information of
specific, measured quantities with associated uncertainty. As the
quantitative content of the data increases, the associated uncer-
tainties typically decrease. This provides more stringent constraints
that improve the resulting model (see Pargett et al., 2013 for further
details [11]).

Once mechanistic models are trained or optimized to the sup-
porting data, they can be used to address a number of important
questions. Specifically, a parameterized model can be used to infer
the behavior of hard-to-observe molecules, perform quantitative
simulations of qualitative hypotheses, or generate new hypotheses
based on model behavior. In Section 2 we focus on the challenges
that exist in most model optimization problems and then utilize a
specific example in the Drosophila gap gene network as an illustra-
tive case study.

2. Model complexity and parameter estimation

Dynamic modeling allows insight into systems’ behaviors, but
this insight requires optimized physiochemical parameter values.
Several challenges stand between a newly defined mechanistic
model and the parameter values that make it biologically relevant.
This parameter estimation problem grows exponentially as the
number of modeled (and parameterized) biochemical interactions
grows.

Model and objective function in hand, optimization proceeds in
several steps. First, the unknown parameter values are enumerated
and constrained to biologically feasible ranges (e.g., a kinetic con-
stant or diffusion constant cannot be negative). Second, a stochastic
and incomplete search is performed within this feasible region of
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