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a  b  s  t  r  a  c  t

We  obtain  exact  solutions  for the  collective  model  of two  identical  two-level  atoms  interacting  with two
quantized  cavity  electromagnetic  fields  in  a Raman  type  process.  The  unitary  transformation  method  that
is used  to solve  the  time  dependent  problem,  also  gives  the  eigen  solutions  of  the  interacting  Hamiltonian
at  the same  time.  We  study  the  dynamics  of  atomic  population  and  photon  statistics  in the  two  cavity
modes.  We  obtain  evidence  of co-operative  effects  in  antibunching  and  anticorrelations  in the  modes.

© 2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The properties of non-linear interaction models are of great
interest in quantum optics because of their applications in the field
of two-mode two-photon micromasers [1,2]. Encouraged by the
experimental realization of the two-photon one atom micromaser
on Rydberg transitions in a microcavity [3], a number of schemes for
a two mode two-photon maser with a Rydberg atom in a microwave
cavity have been proposed and analyzed [4–6].

Non linear processes involving two-photon transitions are
important in quantum optics due to high degree of correla-
tion among the emitted photons. Two-photon transitions play an
important role in the production of non-classical light and have
been utilized to produce squeezed light [7,8]. At present we find
a number of publications on single atom two-mode two-photon
processes whereas the publications concerning the many/two atom
non-degenerate processes are still few in number [9–11]. This is the
motivation behind the study of the collective dynamics of a system
of two identical two-level atoms that resonantly interact with two
quantized modes of electromagnetic fields via Raman type process.
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In the present paper we  study the quantum dynamics of the
Two-atom Raman coupled model interacting with two quantized
cavity fields in an ideal cavity. Comparison of the results with the
corresponding data obtained for the one atom model [4,5] makes it
possible to yield the collective features of the model under study.

For obtaining the eigenfunctions and eigenvalues of the Hamil-
tonian of the interacting system a straightforward method, that of
the unitary transformation in quantum mechanics by Sudha Singh
[12] has been used. The method besides being more general is
mathematically simpler.

The paper is organized in the following way. In Sect. 2 we present
Two-atom Two-mode Raman Model describing the relevant Dicke-
type [13] atomic states. Explicit expressions for the eigen functions
and eigen values of the Hamiltonian of the interacting system has
been obtained. In Sect. 3 we study the atomic dynamics of the two-
atom system and its behavior for different values of two  photon
detuning parameter. The time dependence of the mean number of
photons in the mode has been analyzed in Sect. 4. In sect. 5 we
study the statistical properties of the field modes. We  conclude the
paper with a brief summary.

2. Two-atom two-mode Raman model

In dealing with two-mode Raman type processes, a three-level
system of energies E1, E2 and E3
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in the � configuration is considered to be interacting with a
pump mode ω1 and a Stoke mode ω2 [4,14,15]. The Hamiltonian of
the system is written as [4,15–17]

Ĥ =
3∑
i=1

Ei�ii + �ω1â
†
1â1 + �ω2â

†
2â2 + �g1(â1�̂31 + â†1�13)

+ �g2(â2�̂32 + â†2�̂23) (1)

here the symbols â†
j

(j = 1, 2) and âj represent the field creation

and annihilation operators for modes 1 and 2, �̂ii =
∣∣i〉  〈

i
∣∣ are the

level occupation number and �̂ij =
∣∣i〉〈j∣∣ (i /= j) are the transi-

tion operators from level j to i. Levels 3 and 1 (2) are coupled
by a dipole-coupling constant g1 (g2). There is no direct coupling
between levels 1 and 2. The quantities �1 and �2 denote detuning
given by ��j =

(
E3 − Ej

)
− �ωj, j = 1, 2. It has been shown by Wu

[17] that this three level problem can be exactly transformed into a
two-level problem, regardless of whether the detuning is small or
large. The corresponding two-level Hamiltonian under the rotating
wave approximation (RWA) reads [4,5,14–17]

Ĥ = 1
2
�ωo�̂3 + �ω1â

†
1â1 + �ω2â

†
2â2 + �g

(
�̂+â

†
2â1 + �̂−â

†
1â2
)

(2)

The pump radiation mode ω1 and the Stokes radiation mode
ω2 are in two mode resonance with the

∣∣1〉 to
∣∣2〉 transition such

that �ω0 = (E2 − E1) = � (ω1 − ω2).  This Hamiltonian ignores Stark
shifts due to coupling through virtual

∣∣j〉 levels. The �̂ ′s are 2 × 2
Pauli matrices.

The number states for the field modes are the direct product of
number states for modes 1 and 2 i.e. |n1, n2〉F = |n1〉F1

⊗ |n2〉F2
.

The many atom case is constructed just as for the usual
Dicke model [9,13]. We  define the collective atomic operators
R̂1, R̂2, andR̂3 as

R̂k = 1/2
N∑
j=1

�̂j
k
, R̂± =

N∑
j=1

�̂j± (3)

where N is the number of atoms, k = 1, 2, 3 and �̂j± are the atomic
operators for the jth atom.

The operators R̂±, R̂k and R̂2 = R̂2
1 + R̂2

2 + R̂2
3 obey the com-

mutation relations for general angular momentum operators. The
Hamiltonian for the N-atom case is then obtained as

Ĥ = �ωoR̂3 + �ω1â
†
1â1 + �ω2â

†
2â2 + �g

(
R̂+â

†
2â1 + R̂−â

†
1â2
)

(4)

or,

Ĥ = �ωoR̂3 + �ω1â
†
1â1 + �ω2â

†
2â2 + �g(P̂+ + P̂−) (5)

with

P̂+ = R̂+â
†
2â1; P̂− = R̂−â

†
1â2 (6)

We consider only the special case for N = 2. The basis vectors
for the atomic system can be represented as

∣∣ 〉 =
∣∣mh〉where mh

stands for number of atoms occupying their higher energy states.
Since the different atom operators commute with each other, the
following operations hold

R̂3

∣∣mh〉 =
(
mh − N/2

) ∣∣mh〉
R̂+
∣∣mh〉 = (N − mh)

∣∣mh + 1
〉

R̂−
∣∣mh〉 = mh

∣∣mh − 1
〉 (7)

For the two-atom case, the possible two-atom states are∣∣0〉 =
∣∣1〉

A1
⊗
∣∣1〉

A 2
=
∣∣1, 1

〉
A
.∣∣1〉 =

[∣∣1〉
A1

⊗
∣∣2〉

A2
+
∣∣2〉

A1
⊗
∣∣1〉

A2

]
=
[∣∣1, 2

〉
A

+
∣∣2, 1

〉
A

]∣∣2〉 =
∣∣2〉

A1
⊗
∣∣2〉

A2
=
∣∣2, 2

〉
A

(8)

where A1 and A2 refer to atom 1 and atom 2, respectively. We  intro-
duce the Dicke states

∣∣j, m
〉
D

. For the two-atom system we  have
j = 1 with m = 1, 0, −1. These states are related to the two-atom states
above according to∣∣1, −1

〉
D

=
∣∣1, 1

〉
A∣∣1, 0

〉
D

= 1√
2

[∣∣1, 2
〉
A

+
∣∣2, 1

〉
A

]
∣∣1, +1

〉
D

=
∣∣2, 2

〉
A

(9)

If we  assume that initially both the atoms are in the ground state
having n1 and n2 photons with frequencies ω1 and ω2, respectively
then, at t = 0 we have∣∣ (0)

〉
=
∣∣0〉 |n1, n2〉F =

∣∣0, n1, n2
〉

=
∣∣1, −1

〉
D

|n1, n2〉 (10)

On the other hand, if we  assume that initially both the modes
are in coherent states, at t = 0 we have

∣∣ (0)
〉

=
∞∑
n1=0

∞∑
n2=0

Cn1 (˛1)Cn2 (˛2)
∣∣0, n1, n2

〉

=
∣∣1, −1

〉
D

∞∑
n1=0

∞∑
n2=0

Cn1 (˛1)Cn2 (˛2) |n1, n2〉

where
∣∣Cni (˛i)∣∣2 = Pni (n̄i) =

∣∣〈ni ∣∣˛i 〉∣∣2 = exp (−n̄i)
n̄
ni
i

ni!
(i  = 1, 2)

(11)

where n̄i = initial average number of photons in the ith mode.
Pn1 (n̄1) and Pn2 (n̄2) represents the coherent field probability
distribution functions for photon numbers in the Poisson statistics.

The general state vector for the system at any time t can be
expressed as the linear combination of the basis eigenkets of the
interacting system designated as

∣∣ (t)
〉

=
∞∑

n1,n2=0

[
An1,n2

1,1 (t)
∣∣1, 1

〉
A
|n1, n2〉F + An1,n2

1,2 (t)

×
(∣∣1, 2

〉
A

+
∣∣2, 1

〉
A

) ∣∣n1 − 1, n2 + 1
〉
F

+ An1,n2
2,2 (t)

∣∣2, 2
〉
A

∣∣n1 − 2, n2 + 2
〉

(12)

∣∣ (t)
〉

=
∞∑

n1,n2=0

[
An1,n2

1,1 (t)
∣∣0, n1, n2

〉
F

+ An1,n2
1,2 (t)

∣∣1, n1 − 1, n2 + 1
〉

+ An1,n2
2,2 (t)

∣∣2, n1 − 2, n2 + 2
〉]

(13)

In terms of the Dicke states of Eq. (9)

∣∣ (t)
〉

=
∞∑

n1,n2=0

[
An1,n2− (t)

∣∣1, −1
〉
D
|n1, n2〉F

+
√

2An1,n2
0 (t)

∣∣1, 0
〉
D

∣∣n1 − 1, n2 + 1
〉
F

+ An1,n2+ (t)
∣∣1, +1

〉
D

∣∣n1 − 2, n2 + 2
〉
F

(14)

here the relabeling of the A co-efficients from Eqs. (13) and (14) is
obvious.

The state vector
∣∣ (t)

〉
develops from the state vector

∣∣ (0)
〉

at
t = 0 according to∣∣ (t)

〉
= T̂(t)

∣∣ (0)
〉

(15)
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