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We  show  that  pyroelectric  spatial  solitons  can exist  in  non-photovoltaic  photorefractive  crystals  under
open-circuit  conditions  due  to excellent  pyroelectric  effects.  The  space-charge  field  induced  by  pyro-
electric  fields  is  deduced  by considering  the  boundary  condition  of divergenceless  current.  Moreover,
the  solution  of bright,  dark,  and  gray  solitons  is  obtained  by solving  the solitary  wave  equation  and  the
related  numerical  results  are  given.
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1. Introduction

Recently, pyroelectric photovoltaic photorefractive spatial soli-
tons (PPPSS) in lithium niobate crystals have been observed in
experiment [1,2]. PPPSS is resulted from the combination of pyro-
electric effects and photovoltaic effects and can be bright, dark, or
gray [3]. To form PPPSS, there are two major conditions. Firstly,
the pyroelectric field is large enough to support the soliton. Sec-
ondly, the pyroelectric field can persist for a remarkable long time,
i.e. the relaxation time of pyroelectric fields is much larger than
the formation time of the soliton. Considerable researches show
that screening-photovoltaic photorefractive spatial solitons [4,5]
can respectively degenerate into screening solitons [6,7] and pho-
tovoltaic solitons [8,9] under suitable conditions. Similarly, can the
PPPSS be degenerated into pyroelectric solitons and photovoltaic
solitons? Furthermore, we are more interested in the existence of
the pure pyroelectric soliton in non-photovoltaic photorefractive
crystals. In this paper, we will analyze the properties of pyroelec-
tric fields in strontium barium niobate (SBN) crystals and point out
that the pyroelectric field is large enough and can persist for a long
time. Then, the space-charge field induced by pyroelectric fields is
deduced from a set of electromagnetic equation. Finally, we  give
the solution of the bright, dark, and gray pyroelectric soliton and
the related numerical results.
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2. The properties of pyroelectric fields

The pyroelectric field Epy can be created in many photorefrac-
tive crystals, which originated from the change in spontaneous
polarization P of the crystal resulting from a change in tempera-
ture. Assuming homogeneous heating, the pyroelectric field can be
expressed as [10]

Epy = − 1
ε0εr

∂P

∂T
�T  (1)

where ε0 and εr are the permittivity of vacuum and relative per-
mittivity, respectively. �T is the temperature change. It is very
important that the homogeneous pyroelectric field can influence
the photorefractive effect as does the externally applied electric
field [11–13]. Refs. [11,12] have pointed out that large pyroelec-
tric fields in SBN crystals can induce the space-charge field, which
results in remarkable change of refractive index.

Moreover, the relaxation time of the pyroelectric field is given
by [14]

� = ε0εr

�d
(2)

where �d is the dark conductivity of the crystal. For LiNbO3, εr = 28,
�d = 10−16 − 10−18(  ̋ cm)−1, so the pyroelectric field can persist for
several weeks in maximum. The PPPSS were observed in LiNbO3 by
virtue of those advantageous. However, the dark conductivity in
SBN crystals, doped Ce concentration smaller than 0.1 wt %, is 4
to 5 orders of magnitude larger than that of LiNbO3. This is disad-
vantageous for the observation of the soliton. Fortunately, the dark
conductivity in SBN crystals will decrease dramatically when the
dope concentration increases above 0.1 wt %, and the minimum of
the dark conductivity is about 10−15(  ̋ cm)−1 [15]. Simultaneously,
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the relative permittivity εr in SBN crystals is 2 orders of magnitude
larger than that of LiNbO3. So, we can deduce that the pyroelec-
tric field in SBN crystals also can persist for a long time compared
with the formation time of the soliton. Next, we will discuss the
solution of pyroelectric solitons in SBN crystals under open-circuit
condition.

3. The solution of pyroelectric solitons

An optical beam propagates in an unbiased SBN crystal along the
z-axis and is permitted to diffract only along the x-direction. The
optical beam is linearly polarized along x-direction and the crystal
is placed between an insulating plastic cover and a metallic plate
whose temperature is accurately controlled by a Peltier cell [2].
As usual, the optical field is expressed in terms of slowly varying
envelopes �, i.e. Eopt = �x � (x, z) exp (ikz), where k is the wave num-
ber given by k = k0ne = (2	/
0) ne, ne is the unperturbed index of
refraction, and 
0 is the free-space wavelength. Under these condi-
tions, the evolution of the optical beam is governed by the equation
[7]

i
∂�

∂z
+ 1

2k

∂2
�

∂x2
− k0n3

e reff Epysc

2
� = 0 (3)

where reff is the effective ele ctro-optic coefficient, Epysc is the space-
charge field which is induced by the pyroelectric field. We will
deduce the relation between the pyroelectric field Epy and space-
charge field Epysc. To obtain suitable expression of Epysc, we  consider
the following equations.

The differential form of Ohm law is given by

j = �E (4)

The continuity equation for current is given by

∂�

∂t
+ ∇ · j = 0 (5)

The differential form of Gaussian theorem is expressed as

∇ · D = � (6)

where j is the total current, � = �I + �d is the total conductivity, E
is the total electric field. � is the space-charge density, D is elec-
tric displacement vector, � is the specific photoconductivity. Here,

light intensity I = (ne/2
0)
∣∣�∣∣2

depends on x alone and is shown

as I(x) = I0 Ī(x), Ī(x) = exp (−2s1
2), s1 = x/x1, x1 is the characteris-

tic size of the beam such as the beam radius, I0 is the intensity
of optical-beam center. Then, the total conductivity also can be
expressed as � = �0[Ī(x) + 
], �0 = �I0, 
 = Id/I0.Id is dark irradia-
tion. Here, we consider SBN crystals under open-circuit conditions.
Simultaneously, we assume that the illuminated region is small in
extent compare to the thickness H of the crystal, i.e. x1 � H. So, the
total current j can be approximated by

j = jd = �d
V

H
= �dEpy (7)

where jd is divergence-less current chosen to meet boundary con-
dition, V is the voltage. Solving Eqs. (4)–(6), we have

∇ ·
[

ε0εr
∂E

∂t
+ �E

]
= 0 (8)

Considering the boundary condition and neglecting the diffu-
sion and photovoltaic effects, we have [13]

ε0εr
∂E

∂t
+ �E = jd (9)

Solving the partial differential Eq. (9), we have

E
(

t̄, s1
)

= V

H

{



Ī (s1) + 

+ Ī (s1)

Ī (s1) + 

exp

[
−t̄

(
Ī + 


)]}
(10)

where t̄ = t/td, �d = ε0εr/�0 is also known as the characteristic
Maxwell time. The total electric field includes two components,
i.e. E = Epy + Epysc [13,16]. The homogeneous heating causes a homo-
geneous pyroelectric field Epy, which causes a homogeneous
refractive index change for the whole crystal. The formation of the
soliton originates from an inhomogeneous refractive index change
induced by the inhomogeneous space-charge field Epysc. So we have

Epysc = E − Epy = Epy
Ī (s1)

Ī (s1) + 


{
exp

[
−t̄

(
Ī + 


)]
− 1

}

= Epy
I

I + Id

{
exp

[
−t̄

(
Ī + 


)]
− 1

}
(11)

For t̄ = 0, it follows that Epysc = 0, which means that the pyro-
electric field has not been screened in the illuminated region yet
and is fully present. For the steady-state case t̄ � 1, we have

Epysc = −Epy
I

I + Id
(12)

This expression is similar to that of photovoltaic effects. How-
ever, the value and sign can be controlled flexibly by changing the
temperature. Substituting Eq. (12) into (3), we  obtain

i
∂U

∂�
+ 1

2
∂2

U

∂s2
+ ˛

∣∣U∣∣2

1 +
∣∣U∣∣2

U = 0 (13)

where s = x/x0, � = z/(kx2
0), � = (2
0Id/ne)1/2U, 
0 = (�0/ε0)1/2

 ̨ = ıEpy, ı = (k0x0)2(n4
e reff /2). x0 is an arbitrary transverse scale.

In what follows, we can deduce the solution of solitons based on
the Eq. (13).

3.1. The solution of bright solitons

The bright solitary wave solutions can be obtained by express-
ing the beam envelope U in the usual fashion: U = r1/2y(s)exp(i��),
where � represents a nonlinear shift of the propagation constant
and y(s) is a normalized real function bounded between 0 ≤ y(s) ≤ 1,
and is required to satisfy the boundary conditions of y(0) = 1,
y′(0) = 0 and y(s → ± ∞)  =0. The positive quantity r is defined as
r = I0/Id = 1/
, which stands for the ratio of the maximum beam
power density to that of the dark irradiance. Substitution of this
form of U into Eq. (13) leads to the following equation:

d2y

ds2
= 2�y − 2˛

ry3

1 + ry2
(14)

Integrating Eq. (14), we  can obtain

s = ±
∫ 1

y

{
2˛

r

[
ln

(
1 + rỹ2

)
− ỹ2 ln (1 + r)

]}−1/2

dỹ (15)

The normalized bright solitons profile y(s) can be obtained
from Eq. (15) by use of simple numerical integration procedures.
We  can show that expression of brackets is positive for 0 < y2 < 1,
and thus we  can know that the bright solitons require  ̨ > 0,
i.e. Epy > 0, which corresponds to �T  > 0. In this case, the crystal
exhibits self-focusing effects. We  take the following parameters
[17,18]: ne = 2.35, 
0 = 532 nm,  x0 = 20 �m,  reff = 237 × 10−12mV−1,
ε0 = 8.85 × 10−12F/m, εr = 3400, ∂P/∂T = −3 × 10−4, r = 10, �T = 10,
15, 20. For this set of values, we have  ̨ = 20.1, 30.2, 40.2, respec-
tively. Fig. 1 depicts the normalized intensity profile of such bright
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