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a  b  s  t  r  a  c  t

The  closed-form  expression  for the  mean-squared  width  of  apertured  partially  coherent  beams  propa-
gating  through  turbulent  media  is  derived  by using  the  integral  transform  technique.  The  influence  of
turbulence  on  the  spreading  of  apertured  partially  coherent  beams  is  studied  quantitatively  by  exam-
ining  the  relative  mean-squared  width,  which  is  defined  as the ratio  of the mean-squared  width  of
an  apertured  partially  coherent  beam  in turbulence  to the  mean-squared  width  of  the same beam
in  free  space.  On  the  other  hand,  the  range  of  turbulence-independent  propagation,  also  a  reason-
able  measure  of the resistance  of  a  beam  to turbulence,  is  obtained  by  examining  the  mean-squared
width.  It is  shown  that the  spreading  of apertured  partially  coherent  beams  is  less  affected  by tur-
bulence  with  smaller  truncation  parameter  ı and  coherence  parameter  ˛ than  with  larger  ı  and
˛.  In  addition,  the influence  of turbulence  on  the  spreading  of apertured  partially  coherent  beams
increases  first  and  then  decreases  due  to  increasing  waist  width  w0. The  results  obtained  are  explained
physically.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

It is of interest in studying propagation properties of laser
beams in turbulence for many practical applications such as track-
ing, remote sensing and atmospheric optical communication, etc
[1]. One of the important properties of laser beams propagating
through turbulent media is their spreading, which has been car-
ried out widely, such as the spreading of Gaussian Schell-model
(GSM) beams, partially coherent Hermite–Gaussian (HG) beams,
and it was demonstrated that partially coherent beams are less
affected by turbulence than fully coherent ones [2–6]. In 2003 Shi-
rai et al. [7] pointed out that in atmospheric turbulence the relative
spreading of higher-order modes is smaller than that of lower-order
modes. In 2009 we demonstrated that annular beams with larger
obscure ratio ε, larger order M,  larger wave length �, and smaller
outer radius w0 are less sensitive to the turbulence than those with
smaller ε, M,  � and larger w0 [8].

On the other hand, it is well-known that the beam emitted
from a laser system is more or less apertured in practice. As yet,
Refs. [9–13] have dealt with the propagation property of apertured
laser beams through atmospheric turbulence. Recently, we studied
the directionality of apertured GSM beams propagating through
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atmospheric turbulence [14]. However, the spreading of apertured
partially coherent beams propagating through atmospheric turbu-
lence has not been examined until now.

The goal of this work is to investigate the spreading of aper-
tured partially coherent beams propagating through turbulent
media. The closed-form expression for the mean-squared width
of apertured partially coherent beams is derived. The influence of
turbulence on the spreading of apertured partially coherent beams
is studied quantitatively by examining two  relevant parameters,
i.e., the relative mean-squared width

(
w(z)turb/w(z)free

)
and the

turbulence distance zT. Some interesting results are obtained and
interpreted physically.

2. Relative mean-squared width

We  suppose a Gaussian Schell-model (GSM) beam is incident
upon a slit with full width 2d oriented along x axis at the source
plane z = 0. The rectangular function of the form

T(x) =
{

1 |x| ≤ d

0 |x|> d
(1)

can be used to describe the window function of the slit, and T(x)
can be expanded into a finite sum of complex-valued Gaussian
functions [15]
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T(x) =
M∑
i=1

Fi exp

(
−Gix

2

d2

)
(2)

where the coefficients Fi, Gi and the number M are evaluated by
a computation fitting [15], and omitted here. It shows that the
method of the finite complex Gaussian expansion of the aperture
function is applicable to the Fraunhofer and Fresnel regions except
for the extreme near field (<0.1 times the Fresnel distance) [15].

In the Cartesian coordinate system, the cross-spectral density
function of a GSM beam at the source plane (z = 0) can be expressed
as [16]

W (0)(x′
1, x′

2, z = 0) = exp

(
−x

′2
1 + x′2

2

w2
0

)
exp

[
−
(
x′

1 − x′
2

)2

2�2
0

]
(3)

where w0 and �0 are the waist width and spatial correlation length
at the source plane z = 0, respectively.

Based on the extended Huygens–Fresnel principle, the average
intensity of an apertured GSM beam propagating through turbulent
media reads as

〈
I(x, z)

〉
= k

2�z

d∫
−d

d∫
−d

dx′
1dx′

2W
(0) (x′

1, x′
2, z = 0)

×exp

{(
ik

2z

)[
(x′

1
2 − x′

2
2) − 2(x′

1 − x′
2)x
]}〈

exp
[
 ∗(x′

1, x, z) +  (x′
2, x, z)

]〉
m

(4)

where k =
(

2�/�
)

(� is the wavelength),  (x′, x, z) denotes the ran-
dom part of the complex phase of a spherical wave that propagates
from the source point to the receiver point, 〈 〉m denotes average
over the ensemble of the turbulent medium, and [17]〈

exp
[
 ∗(x′

1, x, z) +  (x′
2, x, z)

]〉
m

∼= exp

[
− (x′

1 − x′
2)2

�2
0

]
(5)

with

�0 = (0.545C2
nk

2z)
−3/5

(6)

where �0 denotes the spatial coherence radius of a spherical wave
propagating through turbulence, and C2

n specifies the refraction
index structure constant. Rytov’s quadratic approximation of the
phase structure function, a suitable approximation in practice, is
used in Eq. (5).

Substituting Eqs. (2) and (5) into Eq. (4), Eq. (4) can be written
as

〈
I(x, z)

〉
= k

2�z

M∑
i=1

M∑
j=1

FiF
∗
j

∞∫
−∞

∞∫
−∞

dx′
1dx′

2W
(0) (x′

1, x′
2, z = 0)

× exp

(
−Gix

′2
1

d2

)
exp

(
−
G∗
j
x′2

2

d2

)

exp
{(

ik

2z

)[
(x′2

1 − x′2
2) − 2(x′

1 − x′
2)x
]}

× exp

[
− (x′

1 − x′
2)2

�2
0

]
(7)

Considering Eq. (3) and recalling the integral formula,
∞∫

−∞

exp
(
−A2x2 + Bx

)
dx =

√
�

A
exp

(
B2

4A2

)
(8)

After tedious integral calculations, the final result can be
arranged as

〈
I(x, z)

〉
= k

2z

M∑
i=1

M∑
j=1

FiF
∗
j

ˇ
exp

[
− k2

4ˇ2z2

(
Gi + G∗

j

w2
0ı

2
+ 2

w2
0

)
x2

]
(9)

where

 ̌ =
[

1

w4
0

+ k2

4z2
+
GiG∗

j

w4
0ı

4
+ ik

2z

(Gi − G∗
j

w2
0ı

2

)
+
Gi + G∗

j

w2
0ı

2

(
1

w2
0

+ 1

2w2
0˛

2
+ 1

�2
0

)
+ 2

w2
0

(
1

2w2
0˛

2
+ 1

�2
0

)]1/2
(10)

here ı =
(
d/w0

)
and  ̨ =

(
�0/w0

)
are called the beam truncation

parameter and coherence parameter [16], respectively. From Eq.
(9), it can be seen that the average intensity distribution of aper-
tured GSM beams depends on C2

n , ı, ˛, w0, z and �.
If ı→ ∞,  Eq. (9) reduces to〈

I(x, z)
〉 ∣∣unapertured = k

2z�
exp

[
− k2

2w2
0z

2�2
x2

]
(11)

where

� =
[

1

w4
0

+ 2

w2
0

(
1

2w2
0˛

2
+ 1

�2
0

)
+ k2

4z2

]
(12)

Eq. (11) is the average intensity of unapertured GSM beams
propagating through turbulent media.

The mean-squared beam width is defined as [2]

w2(z) =
2
∫ ∞

−∞ x
2I(x, z)dx∫ ∞

−∞ I(x, z)dx
(13)

On substituting Eq. (9) into Eq. (13), and making use of the
integral transform technique, the mean-squared beam width of
apertured partially coherent beams propagating through turbulent
media described by Eq. (13) turns out to be

w2(z) = P + Qz + Rz2 + Fz16/5 (14)

where

P =
∑M

i=1

∑M
j=1FiF

∗
j

(((
Gi + G∗

j

)
/ı2
)

+ 2
)−3/2

× w2
0∑M

i=1

∑M
j=1FiF

∗
j
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Gi + G∗

j

)
/ı2
)

+ 2
)−1/2

(15)
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k
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FiF∗
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)
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)

+ 2
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R = 4

k2w2
0

×
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i=1
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j=1

FiF
∗
j

(
(Gi + G∗

j
)/ı2 + 2

)−3/2
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[
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j
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(
1 + 1/2˛2

)(
(Gi + G∗

j
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)
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(
1/˛2

)]
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(17)

F = 4 ×
(

0.545C2
n

)6/5
k2/5 (18)
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