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a  b  s  t  r  a  c  t

This paper  presents  a  new  three-dimensional  autonomous  chaotic  system  with  only  one  positive
term.  Basic  dynamical  properties  of the  new  attractor  are  demonstrated  in  terms  of  phase  portraits,
equilibria,  Lyapunov  exponents,  Poincare  mapping,  bifurcation  diagram.  Furthermore,  we  derive  a  three-
dimensional  spheriform  ultimate  bound  and  positively  invariant  set  for all the positive  values  of  its
parameters  a,  b,  c. At  last,  the  horseshoe  chaos  in  this  system  is investigated  based  on the  topological
theory.
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1. Introduction

Since the discovery of the Lorenz chaotic system in 1963 [1],
chaos has been studied extensively. As the first chaotic model,
Lorenz had declared that chaotic systems are dynamic systems
described by nonlinear differential equations and they are strongly
sensitive to initial conditions, which means that, even if the sys-
tem mathematical description is deterministic, its behavior is still
unpredictable. From then on, many-like chaotic systems such as
Rössler systems [2], Chen system [3]. Lü system and Liu systems
[4,5] were reported and analyzed. And in 2002, a unified chaotic
system was created that bridges Chen system to Lorenz system
through Lü system chaotic attractor [6]. It is notable that the family
of Lorenz systems has two quadratic terms on the right-hand side
of the governing equations. More recently, Qi et al. [7] introduce a
new three-dimensional smooth autonomous chaotic system with
three quadratic terms. When proper parameters are chosen, a sin-
gle four-wing attractor and two coexisting single-wing attractors
with different initial can be generated.

Due to great potential in chemical reactions, cryptology, electri-
cal engineering, information processing and so on, it is important to
generate new chaotic systems and analyze their dynamical behav-
iors and dynamical properties.

As we know, though a chaotic system is bounded, it is not
an easy work to estimate and examine its bound. Therefore, an
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interesting fundamental question is how to estimate the bound
of strange attractor. However, the ultimate bounds of many other
chaotic system remain to be solved. The ultimate bound of Chen
system is investigated in [8], but the parameter values consid-
ered does not cover the most interesting case of the Chen’s chaotic
attractor. And the ultimate bound of the Lü system has not been
studied yet. The bound estimation of a chaotic system is also a
challenging task for most known chaotic systems, even for the
classical Lorenz system. Generally speaking, there are mainly four
methods to estimate the bounds of chaotic systems in current liter-
ature, which is the hyper-plane oriented method [9], the iteration
theorem and the first order extremum theorem [10], Lyapunov sta-
bility theory combined with the comparison principle method [11],
and the optimization method [12,13]. Among which the latter two
methods are proved to be effective and simpler.

Topological horseshoe with symbolic dynamics is a power-
ful tool in rigorous studies of chaos in dynamical systems. Up
to now, remarkable theoretical progress has been made in seek-
ing sufficient conditions for the existence of horseshoes. Kennedy
introduced an important chaos lemma  which proposed a topolog-
ical horseshoe theory in continuous map  [14,15]. Yang obtained
another concernful criteria to find the topological horseshoe in
non-continuous map  [16,17], which have been applied successfully
to some practical dynamical systems to present computer-assisted
verification of chaos [18–23]. Recently, Li introduced a new method
for finding horseshoes in chaotic systems by using several simple
results on topological horseshoes [24]. However, it is still a chal-
lenge for researchers to seek a topological horseshoe in practical
chaotic systems.
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Fig. 1. (a) x–y phase plane (b) three-dimensional view.

2. System description and dynamic properties

In this paper, a new 3D chaotic system is written as follows:

ẋ = −x  − 2y,

ẏ = −xz − by − ax,

ż = xy − cz,

(1)

where x, y, z denote the state variables, a, b, c are the positive real
numbers. Clearly, the new system with only one positive term xy is
different form the Lorenz system.

2.1. Equilibria and stability

It is known that the number of system equilibrium and their
stabilities are very important for the emergence of chaos. In the fol-
lowing, we consider the equilibrium of system (1). For this purpose,
let

−x − 2y = 0, − xz − by − ax = 0, xy − cz = 0. (2)

Then, if 2a≥b, c > 0, we get three equilibria of system (1):
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Linearizing system (1) at any equilibrium (x10, y20, z30), it yields the
corresponding Jacobian matrix

J =

⎡
⎣−1 −2 0

−z30 − a −b −x10

y20 x10 −c

⎤
⎦ .

The characteristic equation is get as below:

f (�) = �3 + C2�2 + C1� + C0, (3)

where

C0 = bc − 2x10y20 − 2ac − 2cz30 + x2
10,

C1 = bc + x2
10 + b + c − 2z30 − 2a,

C2 = b + c + 1.

(4)

According to the Routh–Hurwitz criterion, only if C2 > 0, C1 > 0,
C0 > 0 and C2C1− C0 > 0, the real parts of all the roots are negative.
Thus, there are three unstable equilibria in system (1) when a = 3,
b = 0.3, and c = 0.3.

2.2. Chaotic phase portraits, Poincare mapping

When a = 3, b = 0.3, c = 0.3, system (1) is chaotic with Lyapunov
exponents L1 = 0.1792, L2 = 0, L3 = −2.487. The phase portraits are
depicted in Fig. 1. Furthermore, Poincare sections also show this

Fig. 2. (a) The Poincare mapping of x–y plane (b) the Poincare mapping of x–z plane.

Fig. 3. The bifurcation diagram with respect to a.

Fig. 4. The Lyapunov exponents spectrum with respect to a.

system is chaotic. The numerical result is displayed in Fig. 2, where
two Poincare sections on the x–y and x–z planes are depicted.

2.3. Lyapunov exponent spectrum and bifurcation diagram

The numerical features of the new chaotic attraction can be
further illustrated by its Lyapunov exponent spectrum and its bifur-
cation diagram, as shown in Figs. 3 and 4, respectively.

3. Spheriform localization with precise bounds

Theorem 1. When a > 0, b > 0, c > 0, the following three-dimensional
spheriform set  ̋ = {(x, y, z)|x2 + y2 + (z + a + 2)2 ≤ R2} is the ulti-
mate bound and positively invariant set of system (1)
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