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a  b  s  t  r  a  c  t

We  reveal  theoretically  the  existence  and stability  of  surface  defect  solitons  (SDSs)  at  interfaces  between
dual-frequency  and  simple  lattices  with  focusing  saturable  nonlinearity.  Solitons  with  some  unique  prop-
erties  exist  in  such  composite  structures  with  the  change  of defect  intensity.  For  zero  defect  or  positive
defect,  the surface  solitons  exist  at the semi-infinite  gap  and  cannot  exist  in the  first  gap,  and  solitons
are  stable  at lower  power  but unstable  at high  power.  For  the  case  of negative  defect,  the  surface  solitons
exist  not  only  in  the  semi-infinite  gap,  but  also  in  the  first gap.  With  increasing  the  defect  depth,  the stable
region  of surface  solitons  becomes  narrower  in  the  semi-infinite  gap, these  solitons  are  stable  within  a
moderate  power  region  in the  first gap  within  unstable  solitons  in  the  entire  semi-infinite  gap.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Surface solitons are special waves localized the interfaces
between two different media or different refractive index modu-
lations. The existence of surface solitons at the interfaces has
attracted special attention due to their novel and unique char-
acteristics in diverse areas of physics such as for exploration of
intrinsic and extrinsic surface characteristics, as well as potential
applications in optical sensing and switching [1,2]. The interfaces
between different medias support different types of surface soli-
tons such as optical surface waves [3], scalar surface solitons [4,5],
gap solitons [6–8], vector discrete surface solitons [9,10], discrete
surface solitons [11], multipole mode surface solitons [12], poly-
chromatic surface solitons [13]. Moreover, vortex solitons can be
captured stably by an interface between two optical lattices with
different modulation depths [14–16]. Defects and defect states
exist in a variety of linear and nonlinear systems, including solid
state physics, photonic crystals, Bose–Einstein condensates, and the
periodic structure. The introduced defects at interfaces between
lattices can substantially modify the properties of solitons prop-
agation. Defect solitons in lattices with specially designed defect
have been applied extensively for steering of optical beams [17–19],
switching [20], and filtering [21]. Recently, the research on defect
solitons has become an interesting field. The existence and stabil-
ity of defect solitons have been theoretically discussed in many
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systems such as simple optical lattices or superlattices [22–30].
In experiments, defect solitons in both one- and two-dimensional
photonic lattices have been successfully observed [31–34].

Very recently, defect solitons excited at the interfaces between
a simple lattice and a superlattice have been studied numerically
and demonstrated experimentally [35]. Their work has not related
to the case of defect at the interface. Moreover, the existence and
stability of SDSs at the interface between an optically induced sim-
ple lattice and a superlattice have been investigated and discussed
numerically [41]. Surface defect gap solitons in one-dimensional
dual-frequency lattices and simple lattices have been discussed
numerically [36]. However, defect solitons in complicated lattices
will be one of the difficulty and emphases on the field of soliton in
future. We  report on the SDSs can exist at interfaces between mixed
lattices with a defect when the defect strength (or defect intensity)
is changed. The stability of SDSs is also studied analytically and
numerically.

2. Model

We consider the probe beam propagating along the interface
between one-dimensional dual-frequency and one-dimensional
simple optical lattices in the focusing saturable nonlinear media.
Light transmission is governed by the following nonlinear
Schrödinger equation [22,23,27,28]:

i
∂U

∂z
+ ∂2U

∂x2
− E0

1 + IL +
∣∣U∣∣2

U = 0 (1)
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where U is the slowing varying amplitude of the probe beam and
IL is the intensity profile of the mixed optical lattice with a defect
when x < −�/2,

I0 · 1.25 · sin2[˝1(x + �/2)] × sin2[˝2(x + �/2)] (2)

for −�/2 ≤ x ≤ �/2,

0.741I0 sin2[˝1(x + �/2)][1 + ε exp(−x8/128)] (3)

and for x > �/2,

0.741I0 sin2[˝1(x + �/2)] (4)

Here I0 is the peak intensity of optical lattices or
superlattices.˝1 = 1 (in unit of �/D) and ˝2 = D/d (in unit of
�/D) are the lattice wave vectors which describe lattices period
and asymmetry, where D and d are their corresponding lattice
spacings. x (in unit of D/�) and z (in unit of 2klD2/�2) is the
transverse and longitudinal scale, respectively, in which kl = k0ne,
k0 = 2�/�0 is the wave-number in vacuum (�0 is the wavelength in
vacuum) and ne is the unperturbed refractive index. E0 (in unit of
�2/(k0

2ne
4D2�33)) is the applied DC field voltage, where �33 is the

electrooptical coefficient of the crystal. ε is the modulation param-
eter of defect intensity, respectively. We  take typical parameters
in experimental conditions as shown in Refs. [25,26]: D = 30 �m,
d = 5 �m,  ε1 = 0.3, �0 = 0.5 �m,  ne = 2.3, and �33 = 280 pm/V [22,24],
then x = 1, z = 1, and E0 = 1 correspond to 9.55 �m,  5.5 mm,  and
8.86 V/mm.  Other parameters are I0 = 3, E0 = 6. The dual frequency
potential given by Eq. (2) can be induced optically by launching
a beam into the amplitude mask whose intensity distribution of
transmission light is the same as the superlattice potential.

We look for the stationary solitons of Eq. (1) in the form of
U(x,z) = u(x)exp(−i�z), where � is the propagation constant, and
u(x) is the real function representing the profile of the soliton solu-
tion. Substituting the expression into Eq. (1) yields the following
ordinary differential equation:

∂2u

∂x2
− E0

1 + IL + |u|2 u + �u = 0 (6)

The power of solitons is defined as P =
∫ +∞

−∞ u2(x)dx. The soliton
solutions u(x) can be solved numerically by a modified square-
operator method [37,38]. We  construct families of the soliton
solutions, which are determined by the �, D and d, and lattice-
modulation parameters I0 and ε.

To indicate the stability of defect solitons at the interfaces
between dual-frequency and simple lattices with focusing sat-
urable nonlinearity, we search for the perturbed solutions of Eq.
(1) in the form

U = {u(x) + [v(x) − w(x)] exp(ız) + [v(x) + w(x)]∗ exp(ı∗z)}
× exp(−i�z) (7)

where v(x) and w(x) are the real and imaginary part of infinitesimal
perturbations, respectively, with a complex instability growth rate
ı. The superscript “*” means complex conjugation, and v(x), w(x) « 1.
Substituting Eq. (4) into Eq. (1) and linearizing, the eigenvalues of
the coupled equations are obtained as

ı� = −i

[
∂2w

∂x2
+ �w − E0w/(1 + IL + u2)

]

ıw = −i

[
∂2v
∂x2

+ �v − E0v(1 + IL − u2)/(1 + IL + u2)
2
] (8)

These equations can be solved numerically to get the perturba-
tion growth rate Re(ı).

Fig. 1. (ε = 0) (a) The power versus the propagation constant (gray regions corre-
sponding to Bloch bands). (b) Re(ı) versus the propagation constant. (c) Unstable
SGS with � = 1.25 (point A in (a)). (d) Stable surface soliton with � = 2.15 (point B in
(a)). (e) Stable surface soliton with � = 2.55 (point C in (a)). (f) Surface soliton propa-
gation for (c). (g) Surface soliton propagation for (d). (h) Surface soliton propagation
for (e).

3. Numerical results and discussion

To further study the SDSs’ stability, the robustness on propa-
gation of the soliton is tested in direct simulations of Eq. (1) by
adding a noise to the inputted soliton by multiplying them with
[1 + 	(x)], where 	(x) is a Gaussian random function with <	> = 0
and <	2> = 
2 (The adopted � is equal to 10% of the input soliton
amplitude).

First of all, we  study defect solitons at the interfaces between
uniform compounded lattices. Fig. 1(a) shows the power diagram
of SDSs versus propagation constant �. For ε = 0, the SDSs only exist
in the semi-infinite gap, the power P is monotonically decreasing
with increase of �. In the high power region: � < 1.39, surface soli-
tons cannot stably exist. Fig. 1(c) plots the profile of soliton for
� = 1.25 (point A in Fig. 1(a)). The corresponding soliton propa-
gation is shown in Fig. 1(f). We  can see in this figure that the
unstable soliton can drift across the simple lattice, shift away from
the interface to the inner lattice during propagation, and decay
apparently after a certain distance. In the moderate power region:
1.39 ≤ � ≤ 2.63, the surface solitons can stably transmit. The sur-
face solitons profile of a stable example (� = 2.15 corresponds to
point B in Fig. 1(a)) is shown in Fig. 1(d) and the soliton propaga-
tion for � = 2.15 is shown in Fig. 1(g). To further testify the stability
of SDSs, we  take (� = 2.55 corresponds to point C in Fig. 1(a)) for
example. In such a case, the soliton profile is shown in Fig. 1(e) and
soliton propagation for � = 2.55 are shown in Fig. 1(h). It can be seen
from Fig. 1(c)–(e) that the shape of SDSs is centrosymmetric for the
asymmetric spatial distribution of mixed lattice for � = 1.25; with
the increasing of propagation constant, SDSs reduce in amplitude
and its width is broadened, SDSs shape is noncentrosymmetric.
In addition, we find that SDSs can stably propagate at the inter-
faces between uniform compounded lattices shown in Fig. 1(g)–(h).
The above analytic results have been proved by means of using
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