Optik 126 (2015) 2264-2268

Contents lists available at ScienceDirect

Optik

journal homepage: www.elsevier.de/ijleo

Analytical populations of a multilevel atom in a weak
linearly-polarized light

@ CrossMark

Heung-Ryoul Noh*

Department of Physics, Chonnam National University, Gwangju 500-757, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:
Received 16 April 2014
Accepted 25 May 2015

We present analytical solutions of the populations of an alkali-metal atom in the presence of a weak
linearly-polarized laser beam. After a general method for calculating rate equations is described, the
analytical solutions of the populations for the transition Ff;=1— F. =0, 1, 2 are obtained. Provided that
the laser intensity is weak, the time-dependent analytical populations are exact. As examples, explicit
results for the D, and D, transitions of an alkali-metal atom with a nuclear-spin angular momentum of
I=3/2, such as 8"Rb, 22Na, "Li, or 39K, are presented.
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1. Introduction

After the advent of the laser, there has been considerable inter-
est in manipulating the internal or external degree of freedom of
atoms using laser light [ 1]. The former includes optical pumping 2],
high-resolution laser spectroscopy [3], coherent population trapp-
ing (CPT) [4], and electromagnetic-induced transparency (EIT) [5],
and the latter includes laser cooling and trapping of atoms, atom
optics, and Bose-Einstein condensation of atoms [ 1]. Of these, opti-
cal pumping, which was studied before the introduction of the
laser, is now widely used in atomic state preparation of interest
[2,6,7]. While accurate analytical solutions can be obtained for two-
level atoms [8], numerical studies using the rate equations [9] or a
density-matrix formalism [10,11] have been reported for multilevel
atoms.

For the analytical solutions of optical pumping for multilevel
atoms, the analytical solutions of steady-state populations using a
linearly [12] or an elliptically polarized laser light [13] have been
reported. We reported the analytical solutions of the populations of
the D; and D, transition lines of 87Rb atoms [14,15], and used the
results to calculate the saturated absorption spectra analytically
[16]. We also obtained the exact analytical form of the popula-
tions for 87Rb atoms using a weak o* polarized laser beam [17]
considering all the sublevels in the excited state. Extending previ-
ous studies, we report on the analytical calculation of populations
under the influence of a weak 7 polarized laser light, independent
of the magnitude of the energy spacings of the excited state. After
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establishing the equations, although the calculation is applicable to
other transitions with higher angular momentum quantum num-
bers, we restrict our calculation to the transitions Fg=1— F. =0, 1,
2 (Fe=1,2)inthe D, (D) line of an alkali-metal atom, such as 37Rb,
23Na, 7Li, or 39K, with a nuclear-spin angular momentum of I=3/2
[1]. This is because the analytical calculation for other transitions is
too difficult to handle analytically. However, exact populations can
be obtained by using numerical coefficients rather than an analyti-
cal form. Since the method developed in this paper can be applied,
regardless of the energy spacings, it would be more useful for atoms
with relatively smaller excited-state energy spacings, such as 23Na,
7Li, or 39K.

2. General method of calculation

The energy level diagram of the alkali-metal atom under con-
sideration is shown in Fig. 1(a). The ground state has two hyperfine
states (Fg=F and F'). A linearly-polarized single mode laser beam is
tuned at the transition Fg =F — F, =F — 1, F, F+ 1. We assume that the
energy spacing between two hyperfine states of the ground state
is much larger than the natural linewidth (~10 MHz), so that the
populations at the state F; =F are not excited by the laser. The rate
equations for the excited states are given by [16,17]

& = (C/2RC e (fi - &) - T,
pi = (T/2)REine(f; = pi) = Tpi, (1
a; = (T/2)RE " ne-a (fi — ai) - Tai,
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Fig. 1. (a) General energy level diagram. (b) Energy level diagram for the D, and D
lines of the atoms with I=3/2.

where I" is the decay rate of the excited states and i denotes the
magnetic quantum number. In Eq. (1), the saturation parameters
are given by

Q2/2
T, = / , )
(8+ Aﬁjl) +T2/4

where Fe=F—1, F, F+1, Q is the Rabi frequency, iAf> = Eg, — Ef,
is the hyperfine energy spacing between excited states, and &
is the detuning of the laser frequency relative to the transition
Fg=F— Fe=F+1.InEq. (1), the relative transition strength is given
by [18]

Rfeme = (2Le +1)(2Je + 1)(2Jg + 1)(2Fe + 1)(2Fg +1)

Le Je S Je Fe I Fg 1 Fe 2
Jo Lg 1 Fg Jg 1 Mg Me—Mg —Me '

where L, S, and I are the orbital, electron spin, and nuclear spin
angular momenta, respectively, and {} [()] denotes the 6] [3]] sym-
bol.

When the intensity is weak, the populations of the excited states
are smaller than those of the ground states by a factor of ~(2/T")2.
Thus, we can obtain the following equations from Eq. (1):

. 2 .
fi= (& +Tg) ~ —— i+ T'pi)
T REH neRE;
2
=~ 7F1,(ql‘ + I'g;). (3)
Inr_1R

Inserting the trial solutions in the form of ~e*I' in Eq. (3), we obtain
the following relations of proportionality:

’IFRFl NE- 1RF i 4
Pifmgn q"fmgr (4)

The rate equation for the ground state sublevel f; is given by
F+1 r i+1
fi=Y l—zRF:,'J:m ( s(“)) > TRy 1 : (5)
v=F-1 Mme=i—1

where él(”l) =g, SEF) = p;, and SEF‘U =g;. If Egs. (1) and (3) are
inserted into Eq. (5), we obtain

2 : :
7m,(gl+l"gz)— & -Tg-pi—TI'pi—q—Tq;
F’)Fﬂ F,i

i+1

>

me=i—1

[ (REFTMeg; + REMep; + R ™eq; ) (6)

Inserting the trial solutions in the form of ~e*'* into Eq. (6) and
using Eq. (4), we have linear equations for gj,

i+1
~h+a@)1+M)gi+ > bjg =0, (7)
j=ic1
where
F+1 F+1l F+1
v,i V,j pV,Jj
= ) mRy, b= m, > nuREIRYL. (8)
v=F-1 v=F-1

Eq. (7) can be expressed as a matrix form, MgT =0, where g=(go, g1,
g, ...,8F1, &) and M is given by

Q 2bgy O o ... 0 0 0
bio Q bz 0 0 0 0
0 by Qy by --- 0 0 0
M = ,
0 0 0 o br_1r-1 Qr-1 br_afr
0 0 0 0 - 0 brr1 QF

with Q;=bj; — (2A +a;)(1+X). It should be noted that, since the &
polarized light is used, the populations have a symmetric prop-
erty, i.e., f_i=f;, g_i=8i, P_i=Di» 4_i=qj, and h_; = h; for all relevant
i. A can be calculated by equating the secular equation of the
matrix M. The secular equation in the lowest order in the satu-
ration parameters contains the term A(1+ A). Therefore, the lowest
ordertermin A isOor —1,and thus A can be expressed as A ~ O(7;) or
A~—1+ O(n,) whichis called case A and case B, respectively. In case
A Q; ~ Q = b;; — (2X + a;). In contrast, in case B, Q; ~ QP =b;+2x
where x = A +1.In each case, the number of solutions is F+ 1. In the
calculation, only the solutions in case A are important.

After the values of A are determined, g; is calculated as follows:

F+1 F+1
8= E ui,neknrt + E Ui,ne(il+X’1)Ftv i= 0,...,F, (9)
n=1 n=1

where the first (second) term in the right-hand side represents case
A (B). The coefficients in Eq. (9) are expressed in terms of ug, and

vo,n (n=1, ..., F+1)using the relations:
uin = (2An+ai_1 —bi_1,i1)Uj_1,n — bi—l,i—2“i—2,n! for i>2,
bi_q
(2An +ag — bo,0)uo,n
ul,n = )
2b0’1
P ~(2xn +bi_1,i1 Wiin — bi—1,i—2vi—2,n, for i>2,
bi_1,i

_(2xn + bo,0)vo, n

Mn =———5——

The coefficients u;, and v; , in Eq. (9) can be determined from the
boundary conditions: g;(0)=0 and g;(0) = FnFHRF“ ’/[4 21+ 1))
for i=0, ..., F, where we used the fact that f;(0)=1/[2(2]+1)] is
the population of each sublevel in the ground state at equilib-
rium. When atoms with I=3/2 are considered, f;(0)=1/8. Once the
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