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a  b  s  t  r  a  c  t

We  present  analytical  solutions  of the populations  of an alkali-metal  atom  in  the presence  of  a  weak
linearly-polarized  laser  beam.  After  a general  method  for  calculating  rate  equations  is described,  the
analytical  solutions  of  the populations  for the  transition  Fg =  1 →  Fe =  0,  1, 2  are  obtained.  Provided  that
the laser  intensity  is  weak,  the  time-dependent  analytical  populations  are  exact.  As  examples,  explicit
results  for  the  D2 and  D1 transitions  of an  alkali-metal  atom  with  a nuclear-spin  angular  momentum  of
I =  3/2,  such  as 87Rb, 23Na, 7Li,  or 39K,  are  presented.
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1. Introduction

After the advent of the laser, there has been considerable inter-
est in manipulating the internal or external degree of freedom of
atoms using laser light [1]. The former includes optical pumping [2],
high-resolution laser spectroscopy [3], coherent population trapp-
ing (CPT) [4], and electromagnetic-induced transparency (EIT) [5],
and the latter includes laser cooling and trapping of atoms, atom
optics, and Bose–Einstein condensation of atoms [1]. Of these, opti-
cal pumping, which was studied before the introduction of the
laser, is now widely used in atomic state preparation of interest
[2,6,7]. While accurate analytical solutions can be obtained for two-
level atoms [8], numerical studies using the rate equations [9] or a
density-matrix formalism [10,11] have been reported for multilevel
atoms.

For the analytical solutions of optical pumping for multilevel
atoms, the analytical solutions of steady-state populations using a
linearly [12] or an elliptically polarized laser light [13] have been
reported. We  reported the analytical solutions of the populations of
the D1 and D2 transition lines of 87Rb atoms [14,15], and used the
results to calculate the saturated absorption spectra analytically
[16]. We  also obtained the exact analytical form of the popula-
tions for 87Rb atoms using a weak �+ polarized laser beam [17]
considering all the sublevels in the excited state. Extending previ-
ous studies, we report on the analytical calculation of populations
under the influence of a weak � polarized laser light, independent
of the magnitude of the energy spacings of the excited state. After
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establishing the equations, although the calculation is applicable to
other transitions with higher angular momentum quantum num-
bers, we restrict our calculation to the transitions Fg = 1 → Fe = 0, 1,
2 (Fe = 1, 2) in the D2 (D1) line of an alkali-metal atom, such as 87Rb,
23Na, 7Li, or 39K, with a nuclear-spin angular momentum of I = 3/2
[1]. This is because the analytical calculation for other transitions is
too difficult to handle analytically. However, exact populations can
be obtained by using numerical coefficients rather than an analyti-
cal form. Since the method developed in this paper can be applied,
regardless of the energy spacings, it would be more useful for atoms
with relatively smaller excited-state energy spacings, such as 23Na,
7Li, or 39K.

2. General method of calculation

The energy level diagram of the alkali-metal atom under con-
sideration is shown in Fig. 1(a). The ground state has two hyperfine
states (Fg = F and F′). A linearly-polarized single mode laser beam is
tuned at the transition Fg = F → Fe = F − 1, F, F + 1. We  assume that the
energy spacing between two  hyperfine states of the ground state
is much larger than the natural linewidth (∼10 MHz), so that the
populations at the state Fg = F′ are not excited by the laser. The rate
equations for the excited states are given by [16,17]

ġi = (�/2)RF+1,i
F,i

�F+1(fi − gi) − �gi,

ṗi = (�/2)RF,i
F,i

�F (fi − pi) − �pi,

q̇i = (�/2)RF−1,i
F,i

�F−1(fi − qi) − �qi,

(1)

http://dx.doi.org/10.1016/j.ijleo.2015.05.120
0030-4026/© 2015 Elsevier GmbH. All rights reserved.

dx.doi.org/10.1016/j.ijleo.2015.05.120
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2015.05.120&domain=pdf
mailto:hrnoh@chonnam.ac.kr
dx.doi.org/10.1016/j.ijleo.2015.05.120


H.-R. Noh / Optik 126 (2015) 2264–2268 2265

Fig. 1. (a) General energy level diagram. (b) Energy level diagram for the D2 and D1

lines of the atoms with I = 3/2.

where � is the decay rate of the excited states and i denotes the
magnetic quantum number. In Eq. (1), the saturation parameters
are given by

�Fe = �2/2(
ı + �F+1

Fe

)2 + �2/4
, (2)

where Fe = F − 1, F, F + 1, � is the Rabi frequency, ��Fb
Fa

= EFb
− EFa

is the hyperfine energy spacing between excited states, and ı
is the detuning of the laser frequency relative to the transition
Fg = F → Fe = F + 1. In Eq. (1), the relative transition strength is given
by [18]

RFe,me
Fg ,mg

= (2Le + 1)(2Je + 1)(2Jg + 1)(2Fe + 1)(2Fg + 1)[{
Le Je S

Jg Lg 1

} {
Je Fe I

Fg Jg 1

} (
Fg 1 Fe

mg me − mg −me

)]2

,

where L, S, and I are the orbital, electron spin, and nuclear spin
angular momenta, respectively, and {} [()] denotes the 6J [3J]  sym-
bol.

When the intensity is weak, the populations of the excited states
are smaller than those of the ground states by a factor of ∼(�/�)2.
Thus, we can obtain the following equations from Eq. (1):

fi � 2

��F+1RF+1,i
F,i

(ġi + �gi) � 2

��F RF,i
F,i

(ṗi + �pi)

� 2

��F−1RF−1,i
F,i

(q̇i + �qi). (3)

Inserting the trial solutions in the form of ∼e��t in Eq. (3), we  obtain
the following relations of proportionality:

pi �
�F RF,i

F,i

�F+1RF+1,i
F,i

gi, qi �
�F−1RF−1,i

F,i

�F+1RF+1,i
F,i

gi. (4)

The rate equation for the ground state sublevel fi is given by

ḟi =
F+1∑

	=F−1

[
−�

2
R	,m

F,m�	

(
fi − 
(	)

i

)
+

i+1∑
me=i−1

�R	,me
F,i 
(	)

me

]
, (5)

where 
(F+1)
i

≡ gi, 
(F)
i

≡ pi, and 
(F−1)
i

≡ qi. If Eqs. (1) and (3) are
inserted into Eq. (5), we obtain

2

��F+1RF+1,i
F,i

(g̈i + �ġi) = −ġi − �gi − ṗi − �pi − q̇i − �qi

+
i+1∑

me=i−1

�
(

RF+1,me
F,i gi + RF,me

F,i pi + RF−1,me
F,i qi

)
, (6)

Inserting the trial solutions in the form of ∼e��t into Eq. (6) and
using Eq. (4), we  have linear equations for gi,

−(2� + ai)(1 + �)gi +
i+1∑

j=i−1

bijgj = 0, (7)

where

ai =
F+1∑

	=F−1

�	R	,i
F,i

, bij =
RF+1,i

F,i

RF+1,j
F,j

F+1∑
	=F−1

�	R	,j
F,i

R	,j
F,j

. (8)

Eq. (7) can be expressed as a matrix form, MgT = 0, where g = (g0, g1,
g2, . . .,  gF−1, gF) and M is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q0 2b01 0 0 · · · 0 0 0

b10 Q1 b12 0 · · · 0 0 0

0 b21 Q2 b23 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · bF−1,F−1 QF−1 bF−1,F

0 0 0 0 · · · 0 bF,F−1 QF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with Qi = bii − (2�  + ai)(1 + �). It should be noted that, since the �
polarized light is used, the populations have a symmetric prop-
erty, i.e., f−i = fi, g−i = gi, p−i = pi, q−i = qi, and h−i = hi for all relevant
i. � can be calculated by equating the secular equation of the
matrix M.  The secular equation in the lowest order in the satu-
ration parameters contains the term �(1 + �). Therefore, the lowest
order term in � is 0 or −1, and thus � can be expressed as � ∼ O(�i) or
� ∼ −1 + O(�i), which is called case A and case B, respectively. In case
A, Qi � Q A

i
= bii − (2� + ai). In contrast, in case B, Qi � Q B

i
= bii + 2�

where � ≡ � + 1. In each case, the number of solutions is F + 1. In the
calculation, only the solutions in case A are important.

After the values of � are determined, gi is calculated as follows:

gi =
F+1∑
n=1

ui,ne�n�t +
F+1∑
n=1

vi,ne(−1+�n)�t, i = 0, . . .,  F, (9)

where the first (second) term in the right-hand side represents case
A (B). The coefficients in Eq. (9) are expressed in terms of u0,n and
v0,n (n = 1, . . .,  F + 1) using the relations:

ui,n = (2�n + ai−1 − bi−1,i−1)ui−1,n − bi−1,i−2ui−2,n

bi−1,i
, for i ≥ 2,

u1,n = (2�n + a0 − b0,0)u0,n

2b0,1
,

vi,n = −(2�n + bi−1,i−1)vi−1,n − bi−1,i−2vi−2,n

bi−1,i
, for i ≥ 2,

v1,n = − (2�n + b0,0)v0,n

2b0,1
.

The coefficients ui,n and vi,n in Eq. (9) can be determined from the

boundary conditions: gi(0) = 0 and ġi(0) = ��F+1RF+1,i
F,i

/[4(2I + 1)]
for i = 0, . . .,  F, where we used the fact that fi(0) = 1/[2(2I  + 1)] is
the population of each sublevel in the ground state at equilib-
rium. When atoms with I = 3/2 are considered, fi(0) = 1/8. Once the
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