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a  b  s  t  r  a  c  t

As  SVM  (support  vector  machine)  has good  generalizability,  it has  been  successfully  implemented  in a
variety  of applications.  Yet in the  process  of resolving  its mathematical  model,  SVM  needs  to  compute
the  kernel  matrix.  The  dimension  of  the  kernel  matrix  is  equal  to the  number  of  records  in the  training
set,  so  computing  it is  very  costly  in  terms  of memory.  Although  some  improved  algorithms  have  been
proposed  to  decrease  the  need  for  memory,  most  of  these  algorithms  need  iterative  computations  that
cost  too  much  time.  Since  the existing  SVM  models  fail  to perform  well  regarding  both  runtime  and
space  needed,  we  propose  a  new  method  to decrease  the  memory  consumption  without  the  need  for
any  iteration.  In the method,  an  effective  measure  in  kernel  space  is  proposed  to  extract  a subset  of
the  database  that  includes  the support  vectors.  In  this  way,  the number  of  samples  participating  in  the
training  process  decreases,  resulting  in an accelerated  training  process  which  has  a  time  complexity  of
only O(nlogn).  Another  advantage  of this  method  is that it  can be  used  in  conjunction  with other  SVM
methods.  The  experiments  demonstrate  effectiveness  and  efficiency  of SVM  algorithms  that  are  enhanced
with the  proposed  method.

©  2015  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The support vector machine (SVM) is a relatively new tool for
classification and regression [1,2], but it has already been proven
useful in many applications. The original model of SVM is a convex
optimization conducted by minimizing the structural risk instead
of the empirical risk that previous methods were based on, thus
enabling it to obtain global solutions and overcome the problem
of overfitting. That means it has good generalization performance.
But the original model has a time complexity of O(n3) which is too
high for most practical purposes. Moreover, it needs to compute the
kernel matrix whose dimension is equal to the number of training
samples, which requires a very large amount of memory. Therefore,
some improved algorithms have been proposed over the years.

Suykens and Vandewalle proposed Least squares support vec-
tor machine (LS-SVM) [3]. LS-SVM uses squared errors instead of
inequality constraint that conventional SVM used. As a result, the
quadratic problem is converted into a linear system that accel-
erates the runtime of SVM. Especially in approximately linear
and small-scale datasets, SVM and LS-SVM demonstrate better
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performances than various other method including statistical algo-
rithms, decision tree based algorithms and instance based learning
methods. However, LS-SVM still needs to compute an (n + 1)th order
square matrix in which n is the number of training samples. To
tackle large scale problems, an iterative training algorithm based
on the conjugate gradient (CG) was  proposed by Suykens [4,5]. Chua
proposed an algorithm based on Sherman–Morrison–Woodbury
(SMW)  matrix [6]. A reduced set of linear equations for function
estimation was proposed by Chu [7]. By selecting a pair of samples
violating the KKT optimality conditions, the sequence of minimal
optimization (SMO) algorithm was proposed in [8]. Furthermore,
Second order SMO  algorithm was  proposed in [9]. In this method,
second order approximation information of the dual function is
used to search the second index so that the number of iterations
can be decreased greatly. The second order rules have been derived
based on the dual gain [10]. These iterative algorithms enable solv-
ing large scale classification and regression problems. But all of
them are very costly in terms of time since they need to run for
much iteration.

The geometric properties of SVM can also be used to extract
subsets including support vectors. In [11], the maximum-margin
hyperplane is proposed to find the nearest neighbors in the convex
hull of each class, but it is valid only in separable cases. A method
based on the measurement of neighborhood entropy is proposed
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in [12]. In [13], fuzzy C-means clustering is used to detect samples
including support vectors around the decision curve. Since the sup-
port vectors are located in local extremes or near extremes on the
border of the convex hull, the concept of convex hull is proposed to
reduce the training points in [14,15]. Yet in high dimensional data,
no methods can obtain the precise border, which means that some
support vectors cannot be detected.

In this paper, to improve the performance of SVM for binary
classification problems, we first use the kernel function to map
the training samples into linear space. In the linear space, the ver-
tical hyperplane of the straight line consisting of centers of two
types of training samples is considered as approximate decision
hyperplane. Then the distance from training samples to the vertical
hyperplane is computed and is used to produce the subset including
support vectors. The smaller the distance is, the more the possibil-
ity that the sample will be a support vector. In an average dataset,
the percentage of support vectors in the whole dataset is usually
lower than 30%. Thus, the number of samples participating in the
training process can be decreased greatly. In this way, we produce
a new algorithm to accelerate various SVM methods.

2. Support vector machine

Given a training set {xi, yi}, where xi ∈ Rn(1 ≤ i ≤ l, 1 ≤ j ≤ l) is the
training sample data and yi ∈ {−1, + 1} is the corresponding label for
classification. The mapping function is introduced to convert input
space Rn to Hilbert space:

� : � ⊂ Rn → H

x → �(x)

Training samples can be mapped into Hilbert space by this
mapping function. The original problem in a linear dataset can be
denoted by the following:

min
1
2

‖w‖2 + C

l∑
i=1

�i,

s.t yi((w · xi) + b) ≥ 1 − �i,

�i ≥ 0, i = 1, . . .,  l

(1)

where �i are slack variables to relax the constraints, C is the penalty
coefficient to avoid overfitting,

∑l
i=1�i is the penalty term account-

ing for the presence of outliers. Suppose the inner function in the
Hilbert space is K(. , .), then problem (1) is changed into:

min
1
2

l∑
j=1

l∑
i=1

˛i˛jyiyjK(xi, xj) −
l∑
1

˛i

s.t

l∑
i=1

yi˛i = 0,

0 ≤ ˛i ≤ C, 1 ≤ i ≤ l

(2)

when C is large enough in problem (2), the upper bound of
Lagrange coefficient ˛i disappears. This transforms problem (2)

Fig. 1. A linear space mapped from original inseparable space.

into a separable problem, where the decision function can be

expressed as: f (x) = sgn
(∑l

i=1yia
∗
i
k�(xi, x) + b∗

)
, where b∗ = yj −

l∑
i=1

yia
∗
i
k�(xi, xj), j ∈ {j|0 < a∗

j
< C}, a* is the best solution of the

Lagrange coefficients. The support vectors are those samples whose
Lagrange coefficient is greater than 0.

3. Hyperplane based support vector machine

As described above in Section 1, various different methods have
been developed to improve the performance of SVM. In this paper,
the concept of distance to hyperplane is introduced to measure the
probability of a sample data of being considered as a support vector.

As shown in Fig. 1, the mapped space obtained by kernel function
is a linear space. The hyperplane of the line consisting of two  centers
of two  kinds of mapped points in mapped space can be considered
as the approximation of decision hyperplane. The points closer to
the hyperplane are more likely to be support vectors. These points
are used to replace the entire dataset for cross validation so that
the process of cross validation can be accelerated. As the number
of support vectors usually does not exceed 30% of the total samples
in the entire dataset, the number of samples in the set including
support vectors can be set to 30% of the total samples in the training
set.

The database D consists of two  kinds of points: D+ and D−; for
point xi∈ D +, and yi∈ D −, the number of points in D+ and D- are l1
and l2 respectively. xi and yi in dataset D are mapped into a new
Hilbert space by kernel function ϕ, and the resulting samples are
ϕ(xi) and ϕ(yi) respectively. The two centers of two  types of points
in the mapped space are:

1
l1

l1∑
i=1

�(xi),
1
l2

l2∑
i=1

�(yi),

The hyperplane of the line consisting of the two centers can be
expressed by:
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