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a  b  s  t  r  a  c  t

In the  clutter  environments,  persistently  tracking  multiple  objects  is  still  a very challenging  problem.
In  this  paper,  an  A* algorithm  with  dynamic  weights  is developed  to solve  this  problem.  Firstly,  the
problem  of multiple  object  tracking  is  considered  as  an  integer  programming  of  flow  network  model.
Based  on  this  model,  afterward,  we  relax  the  problem  of  integer  programming  problem  to a  standard
linear  programming  and  achieve  the  global  optimal  solution  with  the  proposed  algorithm,  which  has
been proven  in  this  work.  Compared  with  other  advanced  methods  employed  in the  modern  complex
environments,  the  proposed  method  is  on  the merit  of lower  calculation  complexity  and  better  tracking
accuracy  and  robustness.  Finally,  the simulation  result  is  demonstrated,  which  reveals  that  the  proposed
algorithm  saves  the time  costs  vastly.

©  2015  Elsevier  GmbH.  All  rights  reserved.

Multiple object tracking is a hot issue in the field of computer
vision, robust tracking of objects is important for many computer
vision applications, such as human-computer interaction, video
surveillance, intelligent navigation and other aspects [1,2]. Apart
from the detection algorithm of high performance as an auxiliary,
multi-object tracking of high quality should also track the algorithm
for support, which can address certain types of complex cases, e.g.,
illumination, occlusion, clutter, and so on [3]. The data association
(DA) method is a favorite method of multi-object tracking. The often
utilized techniques include the nearest neighbor method [4], joint
probability data association (JPDA) [5] and the methods based on
neural networks [6] etc.

The effect of the above DA methods is closely related to the
detection accuracy of the detector in the adjacent frames. These
typical approaches are resilient to false positives and false neg-
atives: if an object is not detected in a frame but is detected in
previous and following frames, it is a false negative. A false posi-
tive is mistaking the tracking object ‘A’ as object ‘B’. Although this
problem can be solved using targeted design a statistical trajec-
tory model with filtering [7,8], the estimating method exhibiting
maximum posterior probability is NP-Complete.

Many recent papers proposed some approaches for this prob-
lem: Giebel et al. [9] used sampling and particle filtering to
remove clutter from the same object and reduced the probability of
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NP-Complete. This method can obtain relatively accurate track-
ing trajectory but requires a sufficient sampling point. Perera et al.
[10] divided a long sequence into several short ones, yielding lots
of short tracking tracks, and linked them using Kalman filtering.
This can avoid the NP-Complete. The accuracy of this method is
inversely proportional to the length of the short one, the short track
and the better tracking, but the excessive division will increase the
computation time and cannot track objects for a long time. Fleuret
et al. [11] processed trajectories individually over long sequences
using a reasonable greedy dynamic programming (DP) to choose
the order. These approaches, while effective, cannot achieve the
global optimum.

Zhang’s approach [12] relies on a min-cost network flow frame-
work based optimization method to find the global optimum for
multiple object tracking, but the proposed two algorithms have
many defects in practice and the complexity of the algorithms is
polynomial. Under this framework, Berclaz et al. [13] formulated
multi-object tracking as an Integer Programming (IP) problem and
reduced it to linear programming (LP). By relying on the k-shortest
paths (KSP) algorithm for the optimization of the LP problem, their
approach reduced the complexity to perform robust multi-object
tracking in time. However, because of KSP’s lack of a motion model
over DP, DP’s tendency to ignore fragmentary trajectories makes
it more robust. Pirsiavash [14] continues the work of Zhang, his
method was  used to obtain the global optimal solution with the
greedy algorithm for K = 1 in O (N) but only obtained the approxi-
mate solutions for K > 1 in O (KN),  where K is the unknown optimal
number of unique tracks.

http://dx.doi.org/10.1016/j.ijleo.2015.06.020
0030-4026/© 2015 Elsevier GmbH. All rights reserved.

dx.doi.org/10.1016/j.ijleo.2015.06.020
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2015.06.020&domain=pdf
mailto:zhenghaoxi@hotmail.com
dx.doi.org/10.1016/j.ijleo.2015.06.020


Z. Xi et al. / Optik 126 (2015) 2500–2507 2501

By contrast, we effectively combine the model of Zhang and
Berclaz, a more efficient A* association algorithm with dynamic
weights (A*AADW) was developed to solve the multi-object track-
ing problem on this basis. The A*AADW algorithm can directly
obtain the global solution without greedy optimization, it is far bet-
ter with respect to both the worst case complexity and solving time
than the above state-of-the-art algorithm. The main contributions
are listed as follows:

(1) A general mathematical integer programming formulation of
a min-cost network flow framework is introduced for multi-
object tracking, which more conveniently and naturally filters
out false positives and false negatives using A*AADW.

(2) To solve the integer programming formulation of the proposed
framework and to obtain the global optimum, we propose a
novel more rapid and more efficient A*AADW algorithm, which
is very robust as well.

(3) Extensive experimental validations.

The rest of this paper is organized as follows. In Section 1, we for-
mulate an IP problem using the min-cost network flow framework
and relax it to a continuous LP. Section 2 presents the proposed A*

association algorithm with dynamic weights for the relaxation of
the original integer assumption. Section 3 is about the approaches
of object localization and long sequence segmentation processing.
Section 4 shows the experimental results and a complete evalua-
tion metrics are also given in this section. Finally, conclusions are
drawn in Section 5.

1. Network flow framework

The target motion of multi-objet tracking can be described
better by the relationship of the neighborhood location between
adjacent frames, which uses the DP method in a min-cost network
flow framework. We  define an objective function for multi-object
tracking equivalent to that of [13]. The objective presence of like-
lihood will be estimated by the marginal posterior probability in
every frame, thereby obtaining the potential object moving trajec-
tory.

1.1. Min-cost flow model

We  formulate the multi-object tracking as a whole process, in
which the objective location of each time continuously and dis-
cretely changes with time. A directed 3D spatiotemporal group with
random variable k is used to describe the video sequence.

k = (x, y, t) , x ∈ V (1)

where k denotes any location of an object in this spatiotempo-
ral group, V is the set of all space–time locations in a sequence,
x and y are the pixel positions of the target in the transverse and
longitudinal axes respectively, and t is every instant of time.

For any location k at time t, the neighborhood N (k) ⊂{
1, 2, . . .,  K

}
denotes the locations an object can reach at time t + 1.

A single track, as an ordered set of state vectors T = (k1, . . .,  kN)
and X = (T1, . . .,  TL) is a set of the collection of tracks. We assume
that the tracking tracks independently of each other, and describe
the network flow framework of multi-object tracking using the
dynamic model as follows:

P (X) =
∏
T∈X

P (T) (2)

where

P(T) = Psource (k1)

(
N−1∏
n=1

P
(

kn+1

∣∣kn

))
Psin k (kN) (3)

Psource (k1) is the probability of a tracking track starting at loca-
tion k1 and Psin k (kN) is the probability of a tracking track ending at
location kN.

In the spatial coordinate set V, a binary indicator variable ϕi,k for
the directed flow from location i to location k, which stands for the
number of objects moving from i to k. ϕi,k is 1 when the space–time
location i and k are included in some track, if location i at time t and k
at time t + 1, which means that an object remains at the same spatial
location between times t and t + 1. Some constraint conditions are
executed for the variable ϕi,k.

∀k,
∑

i,k∈N(i)

ϕi,k = ϕk =
∑

j∈N(k)

ϕk,j (4)

∀i, k,
∑

k∈N(i)

ϕi,k ≤ 1 (5)

Let a random variable Mk stands for the true presence of an
object at location k in space–time. For every time t, the detector
is used to check every location of the tracking zone. The marginal
posterior probability of an existing object is estimated as follows

�k = P̂
(

Mk = 1
∣∣It

)
(6)

where It is the single image at frame t. We  write m =
{

mk

}
for a

feasible set of the existing likelihood probability distributions of
objects in V by the method of Section 3.1, and M is the spatial set
of Mk. The existence likelihood probability of an object in the given
set of tracks X is

P
(

M = m
∣∣X ) =

∏
k∈X

P
(

Mk = mk

∣∣X ) (7)

Mk is conditional independence in the given X, we can infer the
maximum a posteriori estimate of tracks by the existing likelihood
probability distributions of objects.

X∗ = arg max
X

P (X) P
(

M = m
∣∣X ) (8)

= arg max
X

∏
T∈X

P (T)
∏
k∈X

P
(

Mk = mk

∣∣X ) (9)

= arg max
X

∑
T∈X

log P (T) +
∑
k∈X

log P
(

Mk = mk

∣∣X ) (10)

= arg max
X

∑
T∈X

log P (T) +
∑

k

[
(1 − mk) log P

(
Mk = 0

∣∣X )
+ mk log P

(
Mk = 1

∣∣X )] (11)

= arg max
X

∑
T∈X

log P (T) +
∑

k

mk log
P
(

Mk = 1
∣∣X )

P
(

Mk = 0
∣∣X ) (12)

= arg max
X

∑
T∈X

log P (T) +
∑

k

mk log
(

�k

1 − �k

)
(13)

where Eq. (11) is true because mk is 0 or 1 according to Eq. (5), for Eq.
(10), and we obtain Eq. (12) by ignoring a term that does not need
mk. The cost value of a directed flow between the neighborhood
locations of any adjacent frames is defined as

c
(

ek,n

)
= − log

(
�k

1 − �k

)
(14)
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