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In this  paper,  we  obtain  the  1-soliton  solutions  of the  variable-coefficient  modified  Kawahara  equation
(VCMKE).  The  dark  optical  as  well  as  bright  optical  soliton  solutions  were  found  related  to  the  model
considered  in  this  study.  The  solitary  wave  ansatz  method  is used  to carry out  the  integration.
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1. Introduction

By now, more and more nonlinear wave equations not only in
mathematical but also in various fields have been used. These wave
equations appear in a great array of contexts such as, fluid mechan-
ics, plasma physics, optical fibers, biology, solid state physics,
chemical kinematics, chemical physics and geochemistry. Nonlin-
ear wave phenomena of dispersion, dissipation, diffusion, reaction
and convection are very important in nonlinear wave equations [1].
Optical solitons is one of the important areas of research in the field
of Nonlinear Optics. This area of research has made an enormous
progress especially in the past decades.

In recent years, new exact solutions may  help to find new
phenomena. A variety of powerfull methods, such as the tanh–sech
method [2,3], extended tanh method [4,5], sine–cosine method
[6,7], homogeneous balance method [8,9], first integral method
[10,11],

(
G′
G

)
-expansion method [12,13], trial method [14,15] and

F-expansion method [16,17] were used to solve nonlinear disper-
sive and dissipative problems. These approaches possess powerful
features that make the determination of multiple soliton solu-
tions practical for a wide class of nonlinear evolution equations.
Moreover, the solitary ansatz method has been used for the deter-
mination of the dark and bright soliton solutions.
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The soliton-like solutions for nonlinear PDEs is too important
for extensive applications in many physics areas. Envelope soli-
tons are stable nonlinear wave packets that preserve their shape
when propagating in a nonlinear dispersive medium. Two  differ-
ent types of envelope solitons, dark optical (topological) and bright
optical (non-topological) soliton solution, can propagate in nonlin-
ear dispersive media. Compared with the bright soliton which is a
pulse on a zero-intensity background, the dark soliton appears as
an intensity dip in an infinitely extended constant background [18].

Interest in variable-coefficient nonlinear evolution equations
has grown steadily in recent years. This is due to the fact
that most of the real nonlinear wave equations possess variable
coefficients. Further, nonlinear physical equations with variable
coefficients are more realistic in various physical situations than
their constant-coefficient counterparts. The reason for this is that
constant-coefficient models can only describe the propagation of
wave groups in perfect systems.

The variable-coefficient modified Kawahara equation (VCMKE)

ut + a(t)u2ux + b(t)uxxx + c(t)uxxxxx = 0, (1)

where a(t), b(t) and c(t) are arbitrary funtions of t.
Thanks to the efforts of many researchers, certain types of

nonlinear modified Kawahara equation have been investigated
and solved [19,20], which arise in modeling of various physical
phenomena, are studied by Lie group analysis and generalized
(G′/G)-expansion method in [21].
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2. Applications of solitary wave ansatz method

The solitary wave ansatz method proposed by Biswas [22] and
Triki et al. [23] is particularly notable in its power and applicability
in solving nonlinear problems, and it has been successfully applied
to many kinds of nonlinear partial differential equations [24–31].

2.1. The bright optical soliton solution of the variable coefficient
modified Kawahara equation (VCMKE)

Bright optical solitons are also known as bell-shaped solitons
and non-topological solitons. We  start the analysis by assuming a
solitary wave ansatz of the form [32,33]

u(x, t) = �sechp(�(x − vt)), (2)

where the parameters � = �(t) is the amplitude of the soliton, � = �(t)
is the inverse width of the soliton and v = v(t) is the velocity of the
soliton. The unknown p will be determined during the course of
derivation of the solutions of equation (1). From the ansatz (2), it is
possible to find

ut = d�

dt
sechp� − �p

{
x

d�

dt
− d(t�v)

dt

}
sechp� tanh �, (3)

u2ux = −�3p�sech3p� tanh � (4)

uxxx = −�(p�)3sechp� tanh � + p(p + 1)(p + 2)�3�sechp+2� tanh �,

(5)

uxxxxx = −p5��5sechp� tanh � + 2p(p + 1)(p + 2)
(

p2 + 2p + 2
)

× �5�sechp+2� tanh � − p(p + 1)(p + 2)(p + 3)(p + 4)

× �5�sechp+4� tanh �, (6)

where � = �(x − vt).
Substituting Eqs. (3)–(6) into Eq. (1), we have

d�

dt
sechp� − �p

{
x

d�

dt
− d(t�v)

dt

}
sechp� tanh �

−a(t)�3p�sech3p� tanh �

−b(t)�(p�)3sechp� tanh � + b(t)p(p + 1)(p + 2)�3�sechp+2� tanh �

−c(t)p5��5sechp� tanh � + 2c(t)p(p + 1)(p + 2)
(

p2 + 2p + 2
)

�5�sechp+2� tanh �

−c(t)p(p + 1)(p + 2)(p + 3)(p + 4)�5�sechp+4� tanh �

=  0,

(7)

Now, from (7), matching the exponents of sech3p� tanh � and
sechp+4�, one gets

3p = p + 4, (8)

so that

p = 2. (9)

Setting the coefficients of sechp� terms in Eq. (7) to zero, we
have

d�

dt
= 0, (10)

so that the amplitude � is constant.

�(t) = �0. (11)

From (7), setting the coefficients of sech2p+2� and sechp+4� terms
to zero we obtain

b(t)p(p + 1)(p + 2)�3� + 2c(t)p(p + 1)(p + 2)(p2 + 2p + 2)�5� = 0,

(12)

that leads to:

�(t) =
√

−b(t)
2(p2 + 2p + 2)c(t)

, (13)

Substituting Eq. (9) into (13), we obtain

�(t) =
√

−b(t)
20c(t)

. (14)

Remarkably, the inverse width of the bright solitary wave solution
in Eq. (14) exists that b(t)c(t) < 0 .

The t dependence of the soliton velocity v(t) is found from setting
the coefficients of sechp� tanh � terms in Eq. (7) to zero, we  have

−�p
{

x
d�

dt
− d(t�v)

dt

}
− b(t)�(p�)3 − c(t)p5��5 = 0, (15)

which can be rewritten as follows:

−�p
{

x
d�

dt
− d(t�v)

dt
+ b(t)p2�3 + c(t)p4�5

}
= 0. (16)

Taking into account the fact that the soliton parameter v(t) we
want to determine from Eq. (16) is a function of time, one can split
Eq. (16) into two equations as follows:

d�

dt
= 0, (17)

−d(t�v)
dt

+ b(t)p2�3 + c(t)p4�5 = 0, (18)

which gives some calculations

�(t) = �0 (19)

v(t) = 1
�(t)t

∫ t

0

{
p2b(t′)�3(t′) + p4c(t′)�5(t′)

}
dt′  (20)

where �0 is an integral constant related to the initial pulse inverse
width. Substituting Eq. (9) into (20), we obtain

v(t) = 1
�(t)t

∫ t

0

{
4b(t′)�3(t′) + 16c(t′)�5(t′)

}
dt′  (21)

Having obtained the expressions for the pulse parameters �, �
and v, we construct a family of the one-soliton-type, exact analytic
solutions for Eq. (1) as follows:

u(x, t) = �sechp(�(x − vt)). (22)

Substituting Eqs. (9), (19) and (21) into Eq. (22) we have

u(x, t) = �0sech2

{
�0

(
x −

(
1

�(t)t

∫ t

0

{
4b(t′)�3(t′) + 16c(t′)�5(t′)

}
dt′

)
t

)}
.

(23)

2.2. The dark soliton solution of the variable coefficient modified
Kawahara equation (VCMKE)

In this section, we are interested in finding the dark soliton
solution (expressed as hyperbolic tangent function), as defined in
[34], for the considered VCMKE equation (1). Dark solitons are also
known as topological optical solitons in the context of Nonlinear
Optics.
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