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a  b  s  t  r  a  c  t

In this  present  paper,  we  aim  to extend  the  applications  of direct  algebraic  method  to  solve  a perturbed
nonlinear  Schrodinger’s  equation  with  Kerr law  nonlinearity.  It is  shown  that  the proposed  method  is
effective  and  general.  Many  different  new  complex  solitary  solutions  are obtained.  Some  previous  results
are extended.  These  complex  solitary  wave  solutions  are expressed  by hyperbolic  function,  trigonometric
functions  are  rational  functions.
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1. Introduction

It is well known that the exact solutions of the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity has been exten-
sively studied in the field of theoretical physics. The exact solitary wave solutions can be used to specify initial data for the incident waves
in the numerical model and for the verification of the associated computed solution.

Recently many new approaches for finding the exact solutions to nonlinear wave equations have been proposed, such as, direct algebraic
method [1], simplest equation method [2,3], tanh method [4,5], multiple exp-function method [6], Backlund transformation method [7],
Hirotas direct method [8,9], transformed rational function method [10], and so on [11–16].

The direct algebraic method is a very powerful mathematical technique for finding exact solutions of nonlinear ordinary differential
equations.

In this paper, we will consider the perturbed nonlinear Schrodinger’s equation (NLSE) with Kerr law nonlinearity [17] with following
form:

iut + uxx + ˛|u|2u + i(�1uxxx + �2|u|2ux + �3(|u|2)xu) = 0, (1)

where �1 is third order dispersion, �2 is the nonlinear dispersion, while �3 is also a version of nonlinear dispersion [18,19]. Eq. (1) describes
the propagation of optical solitons in nonlinear optical fibers that exhibits a Kerr law nonlinearity. Eq. (1) has important application in
various fields, such as semiconductor materials, optical fiber communications, plasma physics, fluid and solid mechanics.

This paper is organized as follows. In Section 2, we  introduce the extended direct algebraic method briefly. In Section 3, we give many
exact solutions of Eq. (1). In Section 4, a short conclusion will be given.

2. Extended direct algebraic method

For a given partial differential equation

G(u, ux, ut, uxx, utt, . . .)  = 0, (2)
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We  seek complex solutions of Eq. (2) as the following form:

u = U(�)ei(sx−˝t), � = ik(x − ct), (3)

where k and c are real constants. Under the transformation (3), Eq. (2) becomes an ordinary differential equation

ϕ(Uei(sx−˝t), ikU ′ei(sx−˝t) + isUei(sx−˝t), −ikcU ′ei(sx−˝t) − i˝Uei(sx−˝t), . . .)  = 0. (4)

where u′ = du/d�. We  assume that the solution of Eq. (4) is of the form

u(�) =
n∑

i=0

aiF
i(�), (5)

where ai(i = 1, 2, . . .,  n) are real constants to be determined later. F(�) expresses the solution of the auxiliary ordinary differential equation

F ′(�) = b + F2(�), (6)

Eq. (6) admits the following solutions:

F(�) =

⎧⎨
⎩

−√−b tanh(
√−b�), b ≺ 0

−√−b coth(
√−b�), b ≺ 0

F(�) =

⎧⎨
⎩

√
b tan(

√
b�), b � 0

−
√

b cot(
√

b�), b � 0

F(�) = −1
�

, b = 0

(7)

Integer n in (5) can be determined by considering homogeneous balance [3] between the nonlinear terms and the highest derivatives of
u(�) in Eq. (4). Now with substituting (5) into (4) with (6), then the left hand side of Eq. (4) is converted into a polynomial in F(�), equating
each coefficient of the polynomial to zero yields a set of algebraic equations for ai, k, c. By solving the algebraic equations obtained in step
3, and substituting the results into (5), then we obtain the exact traveling wave solutions for Eq. (2).

3. Application to the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity

Next, we study Eq. (1). Considering the following complex transformation:

u(x, t) = U(�)ei(sx−˝t), � = ik(x − ct), (8)

where s, ˝,  k and c are constants, all of them are to be determined. So

ut = −i(˝U + kcU�)ei(sx−˝t),

ux = i(sU + kU�)ei(sx−˝t),

uxx = −(s2U + 2ksU� + k2U��)ei(sx−˝t),

uxx = −i(s3U + 3ks2U� + 3k2sU�� + k3U���)ei(sx−˝t).

(9)

Substituting (8) and (9) into Eq. (1), we have

�1k3U��� + (kc − 2ks + 3ks2�1)U� + (−k2 + 3�1k2s)U�� − (k�2 + 2k�3)U2U� + (  ̨ − �2s)U3 + (  ̋ − s2 + �1s3)U = 0 (10)

For the solutions of Eq. (10), with the aid of direct algebraic method we make the following ansatz

U(�) =
n∑

i=0

aiF
i(�),

where ai are all real constants to be determined, n is a positive integer which can be determined by balancing the highest order derivative
term with the highest order nonlinear term. Balancing U��� with U2U� then gives n + 3 =2n + n + 1 ⇒ n = 1. Therefore, we may  choose

U(�) = a1F + a0, (11)

Substituting (11) along with (6) in Eq. (9) and then setting the coefficients of Fi, (i = 1, 2, 3, . . .)  to zero in the resultant expression, we
obtain a set of algebraic equations involving a0, a1, a, b and s, ˝,  k as

6a1�1k3 − a3
1(k�2 + 2k�3) = 0,

2a1(−k2 + 3�1sk2) − (k�2 + 2k�3)a3
1 + (  ̨ − �2s)a3

1 = 0,

8(kc − 2ks + 3�1s2k)a1b + (kc − 2ks + 3�1s2k)a1 − (k�2 + 2k�3)(a3
1b + a1a2

0) + 3(  ̨ − �2s)a2
1a0 = 0,

2ba1(−k2 + 3�1sk2) − 2a1a2
0b(k�2 + 2k�3) + 3a1a2

0(  ̨ − �2s) + a1(  ̋ − s2 + �1s3) = 0,

2a1b2�1k3 + a1b(kc − 2ks + 3�1s2k) − a1a2
0b(k�2 + 2k�3) + a3

0(  ̨ − �2s) + a0(  ̋ − s2 + �1s3) = 0.
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