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a  b  s  t  r  a  c  t

We  put  forward  the  existence  and  stability  of defect  surface  gap solitons  at  the  interface  between  uniform
media  and  an  superlattice  with  self-defocusing  nonlinearity.  We  reveal  that  the  defect  plays  the  signifi-
cant  role  in  controlling  the  region  of  solitons  existing.  Various  solitons  are  found  to  be  existed  in  different
gaps  for different  defects.  For  positive  defects,  fundamental  solitons  can exist  stably  in  the  semi-infinite
gap,  and  dipole  solitons  can  exist  stably  in  the  first  gap  but they  are unstable  in  the  second  gap.  For  zero
or  negative  defects,  fundamental  and  dipole  solitons  can  exist  stably  in the first  gap  and  the  second  gap,
respectively.
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1. Introduction

Surface waves are a special type of waves, which are confined
at the interface separated by two media with different properties.
They appear in diverse areas of physics, chemistry, biology, and
display properties that have no counterpart in the bulk, and have
unique properties as well as potential for application, such as sur-
face characterization, optical sensing, and switching [1]. Truncation
of otherwise periodic structures can create an interface between
uniform and periodic media, which can support lattice surface
solitons. Experiments show that surface lattice solitons can exist
not only in focusing but also in defocusing media [2–6]. Interfaces
between lattices with defocusing nonlinearity and uniform media
can support surface gap solitons and surface kink solitons [4–7].
The studies of surface waves at lattice interfaces were extended to
quadratic, saturable, nonlocal nonlinear materials and to interfaces
between complex periodic [8–12].

Defects and defect states exist in a variety of linear and nonlin-
ear systems, including solid state physics, photonic crystals, and
Bose–Einstein condensates [13,14]. In particular, various defect
solitons that appear as defect nonlinear modes in the nonlin-
ear systems have been found, such as vector gap solitons [15],
surface-defect gap solitons [16], etc. Defects surface solitons in
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the supperlattices with saturable nonlinear have been studied in
[17], and solitons can mainly exist in the semi-infinite gap and
the first gap. Moreover, surface solitons in a simple lattice and a
superlattice were observed experimentally in photorefractive crys-
tal [18]. This raises the question of whether surface defect gap
solitons in uniform media and supperlattices with self-defocusing
nonlinear have new properties. In self-defocusing nonlinear peri-
odic media, partially incoherent multi-gap solitons can exist [19]. If
the refractive index decreases with light intensity due to nonlinear
response of the material, the beam normally experiences broad-
ening due to the self-defocusing. However, in periodic photonic
structures, the same type of nonlinearity allows for beam localiza-
tion [20]. Therefore it is worthy to study the properties of surface
gap solitons in supperlattices with self-defocusing nonlinearity.

In this paper, we study surface defect gap solitons in superlattice
with self-defocusing nonlinearity. The properties of surface defect
solitons in the self-defocusing media are quite different from those
in self-focusing media. It is found that fundamental and multipole
solitons can exist in the semi-infinite gap, the first gap and the
second gap. The defect plays the significant role in controlling the
region of solitons existing.

2. Theoretical model

We  consider beam propagation at the interface of uniform
and periodic media with Kerr-type self-defocusing nonlinearity.
The evolution of complex amplitude U of the light fields can be
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Fig. 1. (a) Band structure of the surface superlattice. (b)–(d) Surface superlattice
intensity profiles with (b) a = 0.3, (c) a = 0, and (d) a = −0.3, respectively. For all cases
p  = 12 and � = 0.5.

described by following dimensionless nonlinear Schrödinger equa-
tion (NLSE),

i
∂U

∂z
+ ∂2

U

∂x2
+ pV(x)U − |U|2U = 0, (1)

where the transverse x and longitudinal z coordinates are scaled in
terms of beam width and diffraction length. The parameter p char-
acterizes the depth of refractive-index modulation. Surface defect
gap solitons can exist only when the lattice depth exceeds a thresh-
old value [4], therefore, we fixed p = 12 throughout the paper to
ensure the existing of surface gap solitons. The function V(x) stands
for the lattice refractive-index profile, which are assumed in this
paper as

V(x) =

⎧⎪⎨
⎪⎩

V0[�cos2(x) + (1 − �)sin2(2x)]

[
1 + a exp

(
− x8

128

)]
, x≥ − �

2

0, x < −�

2

(2)

Here a and � represent the strength of the defect and the modula-
tion parameter of superlattice, respectively. When 0.1 ≤ � ≤ 0.7, Eq.
(2) is the superlattice shape [16]. Without losing of generality, we
take �1 = 0.5 throughout the paper.

We  search for stationary solutions to Eq. (1) in the form
U = f(x) exp(ibz), where b is the constant propagation, and f(x) is the
complex function satisfies equations,

bf = ∂2
f

∂x2
+ pV(x)f − |f |2f. (3)

The solutions of defect solitons are gotten numerically from Eq. (3)
and shown in the next section. The linear version of Eq. (3) is

bf = ∂2
f

∂x2
+ pV(x)f. (4)

The surface superlattices governed by Eq. (2) have a Bloch band
structure when a = 0. To understand the main properties of gap sur-
face solitons, it is important to consider first the Bloch spectrum of
Eq. (4). We  search the Bloch spectrum by substituting a solution
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Fig. 2. (a) Soliton power versus propagation constant. (b) Unstable growth rate Re(ı)
versus propagation constants for the dipole solitons in the second gap. (c)–(e) The
distribution of field to the solitons, (c) in the semi-infinite gap with b = 8, (d) in the
first gap with b = 6, (e) in the second gap with b = 2. (For all cases a = 0.3 and p = 12.)

f(x) = q(x) exp(ikx) to Eq. (4), where kx is the Bloch wave number,
and q(x) is complex period function, which satisfies equation,

bq = d2q

dx2
+ 2ikx

dq

dx
− k2

x q + pV(x)q. (5)

We numerically solve Eq. (5) to obtain the Bloch spectrum by the
plane wave expansion method, which are shown in Fig. 1(a). One
can see that for p = 12 the region of the semi-infinite gap is b > 6.87,
the first and the second gap are 4.71 < b < 6.59 and 0.24 < b < 3.72.
Fig. 1(b)–(d) shows the intensity distributions of the surface super-
lattices potentials with the strength of the defect a = 0.3, a = 0
and a = −0.3, respectively. a = 0 corresponds to the uniform surface
superlattice.

To elucidate the stability of surface defect solitons, we  search for
perturbed solution to Eq. (1) in the form U(x, z) = [f(x) + u(x, z) + iv(x,
z)] exp(ibz), where [u(x, z)] and [v(x, z)] are real and imaginary parts
of the perturbation which can grow with complex rate ı upon

propagation. Linearization of Eq. (1) around f(x) yields the eigen-
value problem

ıv = ∂2
u

∂x2
− bu + pVu − 3f 2u, (6)

ıu = − ∂2v
∂x2

+ bv − pVv + f 2v, (7)

which we  solved numerically to find perturbation profiles and asso-
ciated growth rate ı. If Re(ı) > 0, solitons are unstable. Otherwise,
they are stable.

3. Surface defect solitons

In the surface defective superlattices with self-defocusing
nonlinearity, we find fundamental and dipole solitons in the semi-
infinite gap, the first gap and the second gap, as shown in this
section. The fundamental solitons can exist stably in the semi-
infinite gap for positive defects or in the first gap for zero and
negative defects. The dipole solitons can exist stably in the first
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