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a  b  s  t  r  a  c  t

This  paper  studies  the  method  of automatic  optimization  design  of  Gaussian  beam  shaping.  Firstly,  the
principle  of  Gaussian  beam  shaping  was  studied  theoretically  and  the  flattened  Lorentzian  function  (FL)
is chosen  as  the  distribution  of  flattened  beam.  The  mapping  function  of  arbitrary  ray  in  incident  plane
and  image  plane  was  deduced  based  on  the  law  of  conservation  of  energy.  And  then,  according  to  the
characteristics  of  this  system,  Zemax  programming  language  (ZPL)  was  used  to  compile  ZPL  macro  orders
to optimize  the  Gaussian  beam  shaping  automatically.  Finally,  optical  analyzing  software  was  used to
test  the  aspheric  lens  system.  The  method  is  not  only  simple  but  also  practical  with  high  efficient  energy
conversion  and  significant  engineering  application  value.
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1. Introduction

Laser beam shaping is a process of redistributing the irradiance
and phase of an optical radiation beam from an input plane to an
output plane [1–3]. As the laser beam has the characteristic of Gaus-
sian energy distribution, in the field such as laser processing, laser
welding and laser medicine, the non-uniform distribution of energy
will induce high local temperature. This will destroy the proper-
ties of materials and influence the effect between the laser and
materials. Therefore, in order to eliminate the negative effects of
non-uniform temperature, Gaussian beam has to be converted to
the flattened beam with uniformly distributed energy [1–8]. Beam
shaping techniques include aperture shaping, diffractive optical
elements shaping, aspheric lenses shaping and so on. Comparing
with other techniques, aspheric lens shaping is an effective method
with the advantages of high energy utilization and high temper-
ature resistant. So it is more suitable for high-power laser beam
shaping. Although the principle of beam shaping is almost perfect,
but the traditional method is still a complicated work which needs
a lot of calculation. This paper studies the design of Gaussian beam
shaping by using optical software Zemax. And Zemax programming
language (ZPL) was used to compile macro orders to accomplish the
optimization automatically.
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2. The principle of beam shaping

Frieden firstly proposed the method of converting the Gaussian
beam to the flattened beam by using aspheric lens in the 1960s [1].
Fig. 1 shows the schematic diagram of a Keplerian beam shaping
[4,6]. The first and last surfaces are shown as plane. As Fig. 1 shows,
r1 is any ring of radii on incident plane, r2 is the corresponding radii
on exit plane, ω is the waist of Gaussian beam, R is the radius of the
flattened beam, the aspheric surface parameters are described by
z(r1) and z(r2). According to the law of conservation of energy, it
can get Eq. (1).
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2.1. The intensity distribution

Suppose that the input beam is single-mode Gaussian beam
(TEM 00), so the distribution of the input beam can be described as
follows:
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The choice of the distribution of the flattened beam is crucial.
Several analytic functions with a uniform central region have been
studied [9–14]. Usually, the flattened beam can choose the function
such as: super-Gaussian function (SG), flattened Gaussian function
(FG), Fermi-Dirac function (FD), super Lorentzian function (SL) and
flattened Lorentzian function (FL). The expression of SG,  FG, FD,  SL
and FL distribution are listed in Table 1.
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Table  1
The distribution of SG, FG, FD, SL and FL.
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Fig. 1. Schematic diagram of beam shaping.

2.2. The mapping function

The mapping function, which means the relationship between r1
and r2, should be deduced firstly. So the choice of the distribution
of the flattened beam is of significant. Put the distribution of the
output beam into Eq. (1),  the flattened Lorentzian function (FL) can
solve the analytic functions. So we can use the FL as the output
beam distribution. The expression of FL is as follows:
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where q is the shape parameter and RFL is the width parameters
of the flattened Lorentzian profile. The profile is determined by q.
Fig. 2 shows the profiles of FL function according to different q. Fig. 2
indicates that when q becomes larger, the profile of the FL function
is more tend to the flattened beam.

Then put the FL function into Eq. (1),  it can get:
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Fig. 2. The profiles of FL function with different q.

If (r′
2/RFL)q = t, the function (4) can be expressed as
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Put the distribution of the input beam into Eq. (1),  it can get:
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So the mapping function is
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3. The optical design

3.1. The traditional design

Kreuzer proposed a current method in 1969 [15]. The schematic
of calculating the aspherical surface parameters is shown in Fig. 3.
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