ARTICLE IN PRESS

Vaccine xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Recombinant BCG::Rv2645 elicits enhanced protective immunity compared to BCG in vivo with induced ISGylation-related genes and Th1 and Th17 responses

Wei Luo a,b,1, Zilu Qu a,1, Lingyun Zhang , Yan Xie , Fengling Luo , Yang Tan , Qin Pan , Xiao-Lian Zhang a,*

ARTICLE INFO

Article history: Received 28 December 2017 Received in revised form 21 March 2018 Accepted 10 April 2018 Available online xxxx

Kevwords: Tuberculosis (TB) BCG Rv2645 BCG::Rv2645 Vaccine Protective immunity

ABSTRACT

There is a need to develop protective vaccines against tuberculosis (TB). Recently, we identified an immunodominant T-cell antigen, Rv2645, from the region of deletion 13 (RD13) of M. tuberculosis (M. tb) H37Rv, which is absent in Bacille Calmette-Guérin (BCG). Here, a recombinant BCG expressing Rv2645, namely, BCG::Rv2645, was constructed. Compared to BCG, we found that BCG::Rv2645 improved the antigen presentation capacity of dendritic cells (DCs) and elicited much stronger Th1 and Th17 responses, higher CD44^{high}CD62^{low} effector memory CD4⁺ T cells (T_{EM}), and fewer T regulated cells (Treg) and regulatory B10 in mice. Importantly, BCG::Rv2645 exhibited enhanced protective efficacy against virulent M. tb H37Rv challenge in both mice and rhesus monkeys, showing less severe pathology and reduced pathogens. Further, transcriptomic analysis and reverse transcription-quantitative real time PCR revealed that the mRNA levels of ISGylation (Isg)-related genes such as interferon-stimulated gene 15 (Isg15), and Th1- and Th17-related genes such as interferon-γ (IFN-γ) and interleukin-17A (IL-17A) were significantly up-regulated in splenocytes and macrophages after stimulation with Rv2645. This study shows that BCG::Rv2645 is a promising TB vaccine candidate with enhanced protective immunity. The enhanced Th1/Th17 immune responses and up-regulation of ISGylation-related genes induced by Rv2645 may be major factors contributing to the protective immunity of BCG::Rv2645.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Tuberculosis (TB) remains a leading human infectious disease and a major public health problem in low-income countries. Currently, Bacilli Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only tuberculosis vaccine available for human use and has been given to more than 3 billion people since 1921 [1]. However, BCG only decreases childhood tuberculosis (TB), and its protective efficacy against adult pulmonary disease in endemic areas is insufficient, ranging from 0 to 80% [2]. These data indicate that the BCG vaccine lacks the immunogenicity required to generate protective immunity in adult populations. Therefore, the development of more efficacious TB vaccines that

https://doi.org/10.1016/j.vaccine.2018.04.025 0264-410X/© 2018 Elsevier Ltd. All rights reserved.

can confer potent protection in vivo remains a major challenge to TB vaccinologists.

Comparative genomics studies identified 129 coding sequences absent from BCG and/or Mycobacterium bovis but present in virulent M. tb H37Rv, the principal agent of human tuberculosis [3]. These genes are called region of deletion (RD) genes. The functional consequences of most of these RD genes have not been studied. Some of these coding sequences encode potential antigens that could improve immunogenicity if reintroduced into BCG, generating recombinant BCG (rBCG) [4,5]. Many of the most promising candidates for vaccine development are secreted RD proteins [6], such as ESAT-6, CFP10 and Ag85B [5,7-11]. However, we believe that other dominant antigens, with potential capacity to induce protective immune responses, lurk in other RD regions.

The gene product of the open reading frame Rv2645 of M.tb H37Rv was annotated as a conserved hypothetical protein in the database, and its function has not been reported [12]. Recently, we discovered that Rv2645, an early secreted 15 kD protein from

a State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China

^b Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 30052, China

^{*} Corresponding author.

E-mail address: zhangxiaolian@whu edu cn (X -I. Zhang)

¹ Wei Luo and Zilu Qu contributed equally to this work.

2

the RD13 region, evoked the highest level of antigen- specific IFN- γ -producing CD4 $^{+}$ T cells among the 40 tested RD proteins, including the well-known ESAT6 and CFP10 [12]; Epitope mapping revealed that Rv2645 $_{30-44}$ and Rv2645 $_{136-143}$ may be the dominant T-cell and B-cell epitopes, respectively, of Rv2645 [12]. Here, we further evaluated the value of Rv2645 as a candidate antigen introduced into BCG and assessed the immunogenicity and protective ability of recombinant BCG::Rv2645 against $\it M.~tb$ H37Rv in mice and monkeys.

2. Materials and methods

2.1. Strains, plasmids and animal protocol

M. tb H37Rv [strain ATCC 25618] and *M. bovis* BCG [strain ATCC 35734] were maintained on 7H9 middle brook liquid medium and harvested while in log-phase growth. Bacilli were washed in phosphate buffered saline (PBS) with 0.05% Tween 80 and triturated uniformly before use. The plasmid pMV361 (kindly provided by Dr. Jiaoyu Deng, Wuhan Institute of Virology, Chinese Academy of Sciences) was used for construction of shuttle expression plasmid in mycobacterium. The 7H11 middle brook solid medium was used for screening single colonies.

BALB/c mice (6–8 weeks of age) and rhesus monkeys (Chinese origin, 3–6 years old) obtained from Animal Laboratory Center, Wuhan University were used in this study. All bacterial cultures and animal tests were carried out in the ABSL-3 Laboratory of the Wuhan University School of Medicine. The animal experimental protocol was approved by the Institutional Animal Care and Use Committee of Wuhan University. The animal bacterial challenge protocols were performed in compliance with all guidelines and were approved by Institutional Animal Care and Use Committee of Wuhan University.

2.2. Construction of the shuttle prokaryotic expression plasmid encoding Rv2645

The entire Rv2645 gene sequence from *M. tb* H37Rv chromosomal DNA was amplified by PCR and subcloned into the shuttle expression vector pMV361. Primer sequences were 5'-ATTGAATT CATGACCACCACGC-3' (forward) and 5'-AATAAGCTTCCGCCGGTGT TCGC-3' (reverse). The underlined oligonucleotides represent *EcoRI* and *HindIII* sites, respectively, to facilitate cloning. The amplified products were purified with the Axgen Nucleic Acid Purification kit (Axygen, China), digested with *EcoRI* and *HindIII* and ligated into pMV361 that were digested by *EcoRI* and *HindIII*. The resulting plasmid pMV361-Rv2645 was confirmed by restriction enzyme digestion and DNA sequencing.

2.3. Construction of recombinant BCG::Rv2645

The shuttle expression plasmid pMV361-Rv2645 was electrotransformed into the BCG strain by Gene Pulser XcellTM (Bio-Rad, USA) in the 7H11 medium with kanamycin selection. Then, the recombinant vaccine strains were generated, confirmed by PCR with Rv2645 primers mentioned above, and Western blotted with anti-Rv2645 and Southern blot as described below.

2.4. Western blotting and Southern blotting for confirming the recombinant vaccine strain

A positive monoclonal colony was selected from 7H11 medium with kanamycin and amplified in 7H9 liquid medium. Then, the harvested bacteria were used for Western blotting and Southern blotting. For Western blotting, the harvested bacteria cell lysates

underwent SDS-PAGE and were then probed with Rv2645 rabbit polyclonal antibodies prepared in our lab [12] as primary antibody diluted 1:10000 with PBS containing 0.05% (v/v) Tween-20 (PBST), followed by horseradish peroxidase (HRP) conjugated goat antirabbit IgG as a second antibody with 1:4000 dilution. For Southern blotting, the BCG::Rv2645 genome was extracted by the Bacterial Genome Extraction Kit (TianGen, China); then, 10 µg genomic DNA was digested by SauIII enzyme, electrophoresed in agarose gel, and transferred onto polyvinylidene fluoride (PVDF) membrane. The reaction was performed with biotin-labeling at the 5' end of the Rv2645 probe: 5'-CCGGCGATTCACTACACG GAACCGCCCGTGTTGGGG-3' that was synthesized by Invitrogen company (Shanghai, China) and then blotted with HRP-rabbit anti-biotin antibody (Abcam, UK) diluted with 1:2000 in PBST. All color development following the addition of the substrate Immobilon Western (Millipore, Shanghai, China).

2.5. Flow cytometry (FCM) analysis

Splenocytes and lymph node cells from the immunized mice were isolated 30 days after immunization using the BDTM IMag Mouse CD4⁺ T and CD8⁺ T lymphocyte enrichment set-DM (BD, Biosciences Pharmingen, USA) via negative selection. The purified CD3⁺CD4⁺ or CD3⁺CD8⁺ T cells were cultured in 6-well plates (5 \times 10⁶ cell per well). Then, cells were stimulated with Tuberculin purified protein derivative (PPD) (1 μg/mL) or Rv2645 protein (1 μg/mL) at 37 °C in 5% CO2 for 24 h. Brefeldin A (BFA, 1 μg/mL), an inhibitor of intracellular protein transport, was added for 12 h to block cytokine release at 37 °C in 5% CO2 atmosphere. The cells were then fixed in 4% paraformaldehyde in PBS at room temperature (RT) for 15 min, permeabilized and stained with PE-antimouse IFN-γ, FITC-anti-mouse IL-17A, PerCP/Cy5.5-anti-mouse IL-2, PE-anti-mouse TNF-α, PE-anti-mouse GrB, or PE-anti-mouse perforin (eBiosence, USA). The memory CD4⁺T cells were stained by PE-anti-mouse CD44 and PerCP/Cy5.5-anti-mouse CD62L. Treg were gated by PE-anti-mouse FoxP3+ and PE-cy5-anti-mouse CD25⁺ from purified CD3⁺CD4⁺T cells, while B10 cells were gated by APC-anti-mouse CD19⁺ FITC-anti-mouse IL-10⁺.

Dendritic cells (DC) from peripheral lymph nodes were stained with FITC-anti-mouse CD11c, PE-anti-mouse IL-10, PE-anti-mouse IL-12p40, PE-CD83, APC-CD86, PE-CD80, PE-CD40 and PerCP/Cy5.5-MHC-II (BioLegend, USA).

For analysis of lymphocyte proliferation, splenocytes from each immunized mouse were detected by measuring Ki67 expression using a FITC-Ki67 antibody (16A8, BioLegend) by FCM.

All samples were processed on an Accuri C6 flow cytometer, and results were analyzed using the Accuri C6 Flow software (BD Bioscience, Franklin Lakes, NJ).

2.6. Serum antibody measurement by ELISA

Briefly, 96-well microtiter plates were coated with PPD and Rv2645 proteins at $10~\mu g/ml$ ($100~\mu l/well$) in coating buffer (0.1~M carbonate/bicarbonate, pH 9.6) and incubated at $4~^{\circ}C$ overnight. After washing four times with PBS containing 0.05% (v/v) Tween-20 (PBST), the plates were blocked with $200~\mu l/well$ blocking buffer (2% bovine serum albumin (BSA) in PBST) at $37~^{\circ}C$ for 1~h. After washing, 200-fold diluted mouse eyeball blood was added and incubated at $37~^{\circ}C$ for 1~h. The plates were thoroughly washed and then incubated with HRP-conjugated goat anti-mouse IgG1 and IgG2a antibodies at $37~^{\circ}C$ for 30~min, followed by the addition of $100~\mu l/well$ TMB substrate. The reaction was stopped by the addition of $50~\mu l$ of $2~M~H_2SO_4$. The optical densities were then measured at 450~nm within 10~min with a PerkinElmer 2030~multilabel reader. All samples were tested in duplicate wells in each

Download English Version:

https://daneshyari.com/en/article/8485692

Download Persian Version:

https://daneshyari.com/article/8485692

<u>Daneshyari.com</u>