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a  b  s  t  r  a  c  t

The  existence  and  stability  of solitons  in one-dimensional  multilayer  photonic  crystals  potentials  are
reported.  For  all  of the  solitons,  there  exist  cutoff  points  of the propagation  constant  below  which  the
solitons  vanish  in  the semi-infinite  gap.  The  fundamental  solitons  are  stable  in  the  whole  range  where
solitons  exist.  The  antisymmetric  dipole  solitons  can  be  stable  when  the propagation  constant  closes  to
the  cutoff  point.  The  range  of  stability  for symmetric  tripole  solitons  is  changed  with  modulation  depth
and  width  of the  multilayer  photonic  crystals  potentials.  The  power  of  solitons  increases  with  increasing
of  propagation  constant  and  modulation  width  or decreasing  of  modulation  depth  of  the  potentials.
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1. Introduction

Optical spatial solitons have been extensively investigated in
various systems, including nonlocal nonlinearly [1–3], photonic
crystals [4–6] and parity-time symmetric system [7,8]. Optically
induced photonic lattices is of great interest to both fundamental
physics and applications. In the linear spectrum, there exist band
gap structures in such periodic systems. The bands are separated by
gaps where periodic waves do not exist. Solitons emerge as defect
modes whose propagation constants are located inside gaps. Novel
optical phenomena is found in periodic photonic lattices nonlin-
ear structures [9,10]. Various types of solitons appear as nonlinear
defect modes residing in gaps of photonic lattices [11–13]. The
applications about photonic crystals periodic photonic lattices have
been deeply studied [4–6]. Recently, many researchers have paid
much attention to composite multimode solitons. Many composite
multimode solitons are associated with dipole and tripole solitons.
In local Kerr-type media, fundamental solitons are stable, whereas
multimode solitons are unstable. Otherwise, multimode solitons
have been studied in nonlocal nonlinear media theoretically and
experimentally [14]. Many people have focused on multimode soli-
tons in optical lattices too [15–17]. In semi-infinite gap, it has been
found that there exist mainly the symmetric solitons, and the anti-
symmetric solitons have not been found.

In this study, we have studied various solitons in multi-
layer photonic crystals potentials. Compared to the usual periodic
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potential, there exist more types of solitons including symmetric
and antisymmetric solitons in the semi-infinite gap. The properties
of propagation and the stability of solitons in these potentials are
investigated.

2. Model

We  consider optical propagation properties in self-focusing
Kerr-nonlinear with multilayer photonic crystals potentials.
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+ V(x)U + |U|2U = 0, (1)

where U is the slowly varying complex field envelop, x and z are the
transverse and longitudinal coordinates, respectively, V(x) is the
multilayer photonic crystals potentials. The depths of the poten-
tials are U1, U2 and U3 and the widths of them are d1, d2 and d3,
respectively.

The multilayer photonic crystals lattices profiles with U1 = 5,
U2 = 3, U3 = 1 and d1 = �, d2 = �/2, d3 = �/2 is displayed in Fig. 1(a).
Linearizing Eq. (1) with U(x, z) = f(x) exp(ibz + ikx), where b is the
propagation constant, k is a Bloch wave number, and f(x) = f(x + T),
in which T is the period of multilayer photonic crystals potential,
we obtain the Bloch band structure by the plane wave expansion
method for Fig. 1(a), which is shown in Fig. 1(b). One can see that the
region of the semi-infinite gap is b > 0.72, and the first and second
gaps are −0.5 < b < 0.58 and −2 < b < −1.29, respectively.
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Fig. 1. (a) Lattice intensity profiles with U1 = 5, U2 = 3, U3 = 1 and d1 = �, d2 = �/2,
d3 = �/2; (b) band structure of the polybasic photonic crystals lattices which is cor-
responding to (a).

We  search for stationary solutions to Eq. (1) in the form
U = f(x) exp(ibz), where f(x) is a real function and satisfies equations,

bf = 1
2

∂2
f

∂x2
+ V(x)f + |f |2f, (2)

The solutions of solitons are gotten numerically from Eq. (2) and
shown in Section 3.

To analyze the stability of solitons, we search for the perturbed
solution to Eq. (1) in the form U(x, z) = [f(x) + u(x, z) + iv(x, z)] exp(ibz),
where the real [u(x, z)] and imaginary [v(x, z)] parts of the perturba-
tion can grow with a complex rate ı upon propagation. Substituting
the perturbed soliton solution into Eq. (1) and linearization of it
around the stationary solution f(x) yields the eigenvalue problem

ıv = 1
2

∂2
u

∂x2
− bu + Vu + 3f 2u, (3)

ıu = −1
2

∂2v
∂x2

+ bv − Vv − f 2v, (4)

The above eigenvalue problem is solved numerically to find the
maximum value of Re(ı). If Re(ı) > 0, solitons are unstable. Other-
wise, they are stable.

3. Numerical results

In the semi-infinite gap of multilayer photonic crystals lattices,
we find two types of solitons, as shown in this section. The first type
is symmetric solitons, including nodeless fundamental and multi-
mode solitons whose profile of optical field is symmetric. The other
type is antisymmetric solitons, mainly including dipole solitons,
whose profile of optical field is antisymmetric.

We first investigate fundamental solitons in the multilayer pho-
tonic crystals potential, and the results are shown in Fig. 2. The
power of solitons is defined as P =

∫ +∞
−∞ |f (x)|2dx.  Fig. 2(a) shows

the power of solitons versus the propagation constant b. We  can
see that fundamental solitons exist in the semi-infinite gap, and
the power of solitons increases almost linearly with increasing of
b. There exists a cutoff point of the propagation constant below
which the fundamental solitons vanish. The propagation constants

Fig. 2. (a) The power P versus propagation constant b of fundamental solitons with
U1 = 5, U2 = 3, U3 = 1 and d1 = �, d2 = �/2, d3 = �/2; (b) the field distribution of funda-
mental solitons for b = 6; and (c) evolution of the soliton to (b).
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Fig. 3. (a) The power P versus propagation constant b of dipole solitons with U1 = 5,
U2 = 3, U3 = 1 and d1 = �, d2 = �/2, d3 = �/2; (b) Unstable growth rate Re(ı) versus
propagation constant b for dipole solitons.

of cutoff points increase with increasing the modulation depth. We
find that fundamental solitons are stable in the whole regime where
solitons exist in the semi-infinite gap.

The field profile of fundamental solitons is shown in Fig. 2(b),
which corresponds to the circle symbol in Fig. 2(a). Fig. 2(b) shows
that symmetric fundamental solitons exit in the semi-infinite gap.
The propagations of solitons are simulated based on Eq. (1), and
1% random-noise perturbations are added into the initial input to
verify the results of linear stability analysis. The propagation corre-
sponding to the soliton in Fig. 2(b) is shown in Fig. 2(c). We  can see
that symmetric fundamental solitons are stable in the semi-infinite
gap.

Then, we investigate antisymmetric dipole solitons in the mul-
tilayer photonic crystals potential, and the results are shown in
Figs. 3 and 4. The changes of the power versus b for dipole soli-
tons are shown in Fig. 3(a). The power of solitons increases linearly
with increasing of b and the cutoff point of the propagation constant
below which the dipole solitons vanish is lower than that of the fun-
damental solitons. Fig. 3(b) is the perturbation growth rate versus
propagation constant b. We  can see that the dipole solitons exist
stably only the propagation constant is close to the cutoff point.

The field profiles of dipole solitons are shown in Fig. 4(a) and
(b) for different propagation constants, which correspond to the
circle symbols in Fig. 3(a). Fig. 4(a) and (b) shows that antisymmet-
ric solitons can exit in the semi-infinite gap. As the propagation
constant increases, the power of solitons increases but the shape

Fig. 4. The fields for dipole solitons in the semi-infinite gap at (a) b = 4, and (b) b = 6.
(c)  and (d) Evolutions of dipole solitons corresponding to (a) and (b), respectively.
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