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a  b  s  t  r  a  c  t

The  scattering  integrals  of the  modified  theory  of  physical  optics  are  redefined  according  to  the  illumi-
nated  and  unlit  surfaces  of  the scattering  object.  With  this  aim  the  canonical  problem  of  wedge diffraction
is  taken  into  account.  It is  shown  that  the  new  scattering  integral  contain  two  geometrical  optics  and
diffracted  fields.  One  of  the  geometrical  optics  waves  is  the  reflected  field  component  that  propagates  in
the real  space.  The  other  one  transmits  to an  imaginary  space  through  the  scattering  surface  and  does  not
have  any  influence  in the  real space.  The  diffracted  waves  exist  in  the  real  space  and  satisfy  the  related
boundary  condition  on the scattering  surfaces.  The  resultant  field  expressions  are  compared  with  the
exact  series  solution  of the problem  numerically.
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1. Introduction

The physical optics (PO), which was first introduced by Macdon-
ald in 1913 [1], is based on the integration of an induced surface
current density over the illuminated part of the scattering object.
Zero current density is proposed on the shadowed surface. The cur-
rent is evaluated from the incident and reflected geometrical optics
(GO) waves in terms of the magnetic field intensity for the perfectly
conducting surfaces. As a result of this approach, the diffracted
fields, which are found by the edge point technique, are not correct
[2]. The second problem of PO is the exclusion of the unlit surface
of the scatterer, since the GO waves that determine the surface cur-
rent are zero on the shadow region of the scattering problem. For
this reason, the method of PO handles the diffraction problem of
waves by a wedge as a half-plane problem [3]. We  had fixed first
defect of PO by constructing the surface currents according to three
axioms and showed that it was possible to obtain the exact solu-
tion of the scattering problem of waves by a perfectly conducting
half-plane directly with PO [4,5]. Later we justified physically and
mathematically the axioms that led to the rigorous solution [6,7].
The modified theory of physical optics (MTPO) was  also applied
to the wedge diffraction problem and it was shown that the exact
diffracted fields could be obtained by the asymptotic evaluation of
the scattering integrals [8]. The scattering integral of MTPO includes
one GO and diffracted field. The diffracted wave is directly related
with the GO field and compensates its discontinuity at the transi-
tion region where the amplitude of the GO wave suddenly falls to
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zero. This property of the MTPO integral represents a mathematical
basis for the ideas of Young [9,10].

As mentioned above, the second problem of PO is the defini-
tion of the induced surface current only on the illuminated surface
of the scatterer. The reason of this defect lays on the fact that the
PO currents are evaluated from the GO waves. Thus the effect of
the unlit surface on the scattering process cannot be included in
the method of PO. We  separated the scattering integrals of MTPO
into two  parts in order to examine the influence of the scatterer’s
shadowed surface [11,12]. Four integral were obtained after the
decomposition. Two of the integrals were expressing the reflected
and transmitted waves, which were propagating in the real space
of � ∈ [0,2�], from the surface of the obstacle. The remaining ones
were also reflected and transmitted waves but they were propagat-
ing in an imaginary space. However the diffracted waves of the last
two integrals were also affecting the wave propagation in the real
space. The diffracted fields of the wedge problem were the same
with the ones that were introduced by Kouyoumjian and Pathak
[13]. But a PO integral on the unlit surface of the obstacle could not
be defined in the mentioned studies.

The aim of this paper is to introduce a new MTPO integral, which
represents the scattering process from the shadowed portion of
the scatterer. First of all we will review the general construction of
an MTPO scattering integral and the decomposition process, given
in [11]. We will take into account the wedge diffraction problem
in order to construct an integral over the unlit surface. The gen-
eral philosophy of the construction process will be outlined. The
wedge diffraction problem for the case of two  faces illuminated will
also be studied with the new approach and the obtained diffraction
field expressions will be compared with the exact series solution
numerically.
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Fig. 1. The scattered ray that represents the Green’s function for an arbitrary two
dimensional scattering geometry.

A time factor of ejωt is taken into account and suppressed
throughout the paper. j is (−1)1/2. ω expresses the angular fre-
quency and t is time. The Cartesian and polar coordinates are
represented by (x,y) and (�,�) for two dimensional problems.

2. Review of the MTPO surface integrals

In this section, we will review the main features of the MTPO
scattering integrals and their special decomposition, introduced in
[11]. The scattered waves by a perfectly conducting surface, given
in Fig. 1 can be expressed by the integrals of
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for a two dimensional problem [6].
P and Q are the observation and integration (scattering) points. k

is the wavenumber.  ̨ and  ̌ are the angles of incidence and scatter-
ing at Q respectively. ui is the z component of the incident electric
or magnetic field intensity. Note that the z axis is directed out of
the paper. The + and − signs, in Eq. (2), are valid for the z polarized
incident electric and magnetic field intensities respectively. C+ is
the integration contour along the illuminated side of the scatterer
and dl′ is the length element on C+. C− shows the shadowed part of
the scattering surface. The subscripts ts and rs represent transmit-
ted scattered and reflected scattered respectively. R is the distance
between the points of integration and observation. �t,  in Fig. 1, is
the unit tangent vector of the surface at Q. The Green’s function of
the integrals, in Eqs. (1) and (2), is given by

G(P, Q ) = sin
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2
ejkR√
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which satisfies the Helmholtz equation of
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at point Q. Thus the scattering integrals, in Eqs. (1) and (2), are also
the solution of the Helmholtz equation. The stationary phase points
of these scattering integrals occur at ˇs = ±  ̨ [5,6]. ˇs is the value of ˇ
at the stationary phase point. The integral, in Eq. (1), is equal to zero
at ˇs = ˛. It is nonzero for −˛, which shows a ray that passes through
the scattering surface. Thus the first scattering integral represents
the waves that transmit through the scatterer’s surface as if it is
transparent. The amplitude of the transmitted GO wave, which is

evaluated by the stationary phase method, is equal to the incident
wave multiplied by −1. The total transmitted field becomes zero in
the shadow of the scatterer when summed with the incident field.
Note that the total scattered wave has the expression of

us(P) = ui(P) + uts(P) + urs(P). (5)

The scattering integral, in Eq. (2), is nonzero for ˇs = ˛, which
represents a ray that reflects from the scattering point Q. The clas-
sical PO integral can also be divided into two parts that represents
the transmitted and reflected scattered waves, but their asymptotic
evaluation leads to incorrect diffraction field expressions [14].

Now we  will attempt to construct new expressions for the scat-
tering integrals that are defined on the lit (C+) and shadowed (C−)
portions of the scatterer separately. Note that Eqs. (1) and (2) are
only written for the illuminated part of the scatterer although they
include the field expressions in the shadow region. With this aim,
we take into consideration the relation of
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for the term cos  ̨ − cos  ̌ is the first derivative of the phase function
of the scattering integrals, in Eqs. (1) and (2) [11]. We  obtain the
integrals of
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when Eq. (6) is used in Eqs. (1) and (2). The nonzero value of the
first integral’s amplitude function is at ˇs = ˛. Eq. (7) is equal to
zero for all other stationary phase values of  ̌ because of the term
cos  ̌ − cos ˛. Thus Eq. (7) represents the reflected scattered wave
from the lit portion of the scatterer (C+). The integral, in Eq. (10), is
nonzero only for ˇs = 2� −  ̨ and expresses the transmitted wave to
an imaginary space through the lit surface of C+. The real space is
defined by the region  ̌ ∈ [−�,�] with respect to ˇ. For this reason,
the stationary phase value of 2� −  ̨ is out of the real space. In this
paper, we will not deal with the integrals, in Eqs. (8) and (9). We
can write a new scattering integral of
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over the illuminated portion of the scatterer. Eq. (11) includes all
the scattered fields that have interaction with the illuminated side.
There are two  possible field interactions with a surface. The wave
reflects from the surface and propagates in the real space or it
transmits through the scatterer and enters an imaginary space. The
second wave is a mathematical result of PO. However Eq. (11) does
not contain the entire story. As mentioned above, we have a sec-
ond wave that transmits through the scatterer and penetrates the
shadow region of the problem. This component was named as the
shadow radiation by Ufimtsev, but he could not obtain a unique
expression for the transmitted field as given in Eq. (1) [15,16]. Thus
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