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a  b  s  t  r  a  c  t

An  image  encryption  scheme  has  been  presented  by  using  two  structured  phase  masks  in  the fractional
Mellin  transform  (FrMT)  plane  of  a system,  employing  a  phase  retrieval  technique.  Since  FrMT  is a non-
linear  integral  transform,  its use  enhances  the  system  security.  We  also add  further  security  features
by  carrying  out spatial  filtering  in  the  frequency  domain  by using  a combination  of  two  phase  masks:  a
toroidal  zone  plate  (TZP)  and  a  radial  Hilbert  mask  (RHM).  These  masks  together  increase  the  key  space
making  the  system  more  secure.  The  phase  key  used  in decryption  has  been  obtained  by  applying  an iter-
ative  phase  retrieval  algorithm  based  on the  fractional  Fourier  transform.  The  algorithm  uses  amplitude
constraints  of secret  target  image  and  the  ciphertext  (encrypted  image)  obtained  from  multiplication  of
fractional  Mellin  transformed  arbitrary  input  image  and  the two  phase  masks  (TZP  and  RHM).  The  pro-
posed  encryption  scheme  has  been  validated  for a few grayscale  images,  by numerical  simulations.  The
efficacy  of  the  scheme  has been  evaluated  by computing  mean-squared-error  (MSE)  between  the  secret
target  image  and  the  decrypted  image.  The  sensitivity  analysis  of the  decryption  process  to  variations  in
various encryption  parameters  has  also  been  carried  out.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Image encryption and decryption have attracted attention of
researchers and practitioners in the area of image processing
for information security during the last few decades. It is now
well-known that optical techniques for information security [1–3]
have several advantages over digital techniques. A combination
of optical and digital (i.e., hybrid) techniques can provide advan-
tages inherent in both of them. A large number of papers have
been published based on the double random phase encoding
(DRPE) and its variants. DRPE based encryption schemes have
been devised using various integral transforms and their frac-
tionalized versions. For example, Fourier transform [4–8], Gyrator
transform [9,10], Hartley transform [11,12], Arnold transform
[13], and Mellin transform [14–16], etc. have been used exten-
sively.

The two most extensively used techniques so far are based on
the DRPE and fractional Fourier transforms (FrFT). However, these
are based on linear transforms and are vulnerable to attacks such
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as known-plaintext attack [17,18]. There are increasing efforts to
test the vulnerability of different encryption techniques against
various types of attacks such as brute force-, known and chosen
plain-text-, and cipher-text attacks, etc. [19–24]. But when FrFT
is preceded by transformation of input image to log-polar coordi-
nates, it constitutes fractional Mellin transform (FrMT) technique.
FrMT is a non-linear transform and could potentially provide secu-
rity against most known attacks [17]. The security of an encryption
scheme depends on the key space. The larger key space makes it
increasingly difficult to break the system by at least brute force
attack.

In symmetric cryptosystems, decryption keys are the same as
encryption keys. On the other hand, asymmetric cryptosystems
have decryption keys different from encryption keys. Asymmetric
systems are generally considered more secure than the symmetric
ones. The encryption scheme proposed in this paper is based on the
FrMT [14–16] and is an asymmetric one. Here, we  have used FrMT
on an arbitrary input image transformed to an annular domain. The
fractional Mellin transformed image is subjected to two structured
phase-filters in the frequency domain. Here, the introduction of
phase-filters is mainly aimed at enhancing the security by increas-
ing the key space. Structured phase-filters additionally offer some
advantages in an optical set-up. This is followed by phase retrieval
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algorithm [25,26] to generate the phase key that will be required
in decryption.

2. The encryption scheme

In this section, prior to presenting a schematic diagram of the
encryption scheme, a brief description of the associated mathe-
matical transforms and the structured phase masks is given for
the sake of continuity and recapitulation. The security of an opti-
cal encryption technique depends on several factors including
the non-linearity of transform and the enlarged key space used.
The proposed scheme is based on the FrMT, a non-linear integral
transform [14–16]. According to this, an arbitrary image is first
transformed to log-polar coordinates and is then subjected to FrFT,
which is a generalization of Fourier transform in fractional order
[5] and provides additional degree of freedom for encryption. It
is the most widely used tool in signal-, and optical information
processing. The FrFT of order  ̨ of an input function f(x) can be
defined in terms of kernel function as follows (for simplicity, a
one-dimensional input function is considered):

F˛{f (x)}(u) =
∫ +∞

−∞
K˛(x, u)f (x)dx (1)

where the kernel function K˛(x,u) is expressed as:

K˛(x, u) =

⎧⎨
⎩

A exp[i�(x2 cot  ̊ − 2xu csc  ̊ + u2 cot  ̊  ̨ /= n�

ı(x − u)  ̨ = 2n�

ı(x + u)  ̨ = (2n + 1)�

(2)

A = (exp[−i(�(sgn(˚)/4) − (˚/2))])/
√

| sin ˚| and  ̊ = ˛�/2.
Whenever  ̨ is an integer multiple of �, the kernel function is
expressed in terms of Dirac delta function. In the particular case of
transform order  ̨ = 1, FrFT reduces to the conventional full Fourier
transform. FrFT is a linear integral transform and its optical imple-
mentation is done by using Lohmann’s Type I and Type II setups
[4,27–29]. A simple extension of FrFT to two-dimensions can be
written as:

F˛1,˛2 {f (x, y)}(u, v) =
∫ +∞

−∞

∫ +∞

−∞
K˛1,˛2 (x, y; u, v)f (x, y)dxdy (3)

2.1. Fractional Mellin transform

The FrMT is inspired by the fractional Fourier transform. A two-
dimensional FrMT of order (p1,p2) is the FrFT of the same order
(p1,p2) of a function in its log-polar transformation. In log-polar
representation, the Cartesian space coordinates are converted to
polar coordinates relative to the origin of coordinate system where:

x = r cos �; y = r sin �; � = ln
√

x2 + y2 = ln r; � = tan−1
(

y

x

)

In a Cartesian coordinate system, the two-dimensional FrMT of
order (p1,p2) of an image f(x,y) is given by [16]

Mp1,p2 (u, v) =
∫ +∞

−∞

∫ +∞

−∞
f (x, y) × x−(2iu�/ sin ˚1)−1

× exp

[
i�(u2 + ln2x

tan ˚1

]
× y−(2iv�/ sin ˚2)−1

× exp

[
i�(v2 + ln2y)

tan ˚2

]
dxdy (4)

where ˚1 = p1�/2 and ˚2 = p2�/2. When the image is transformed
to an annular domain by log-polar transformation, its FrMT of order

(p1,p2) can be written [16] as:

Mp1,p2 (u, v) = C

∫ +∞

−∞

∫ +∞

−∞
f (�, �)

× exp

⌊
−2i�

∣∣∣∣
(

u�

sin ˚1
+ v�

sin ˚2

)
+ i�(u2 + �2)

tan ˚1

+ i�(v2 + �2)
tan ˚2

∣∣∣∣d�d�

⌋
= Fp1,p2 {f (�, �)} (5)

where C is a constant.
Since, FrMT involves log-polar transformation of the input

image prior to its transformation by FrFT, it requires setting up of
parameters for transforming the input image to an annular domain.
Hence, a few parameters are set in advance such as center position
of annular domain, cx, cy, the radii of the innermost (rin) and out-
ermost (rout) rings of annular domain and the number of sampling
points along distance axis nr and along angle axis nw.

2.2. Structured phase masks

Some recent studies [30–35] have used structured phase masks,
such as toroidal zone plate (TZP) and radial Hilbert mask (RHM) in
their encryption schemes. The structured phase masks have some
advantages over the commonly used random phase masks (RPM).
Since phase TZPs are the diffractive optical elements, it is difficult to
replicate them. TZPs have the advantage of overcoming the problem
of axis alignment in an optical setup and possess characteristics
of various keys in a single mask as additional security parameters
[30–32].

Unlike the DRPE scheme, where RPMs are used in the encryp-
tion, here we  have used structured phase masks such as TZP and
RHM. In this context, one may  argue on the relevance of TZP and
RHM keys when the FrMT based scheme is considered secure due
to its non-linearity. However, we  believe that with the increase
in computational power and development of new techniques, the
security due to non-linearity may  be at risk. Hence, we  feel that
there is a need to enhance the security by increasing the key space
by introducing structured phase masks.

The complex amplitude distribution produced by a converging
toroidal wave front can be written [30] as:

U(r) = exp

{
−ik(r − r0)2

2f

}
(6)

where f is focal length and r0 is ring focus radius. The optical axis is
assumed to coincide with the z-direction, and propagation constant
is k = 2�/�, � being the wavelength. The TZP corresponding to the
sample values of various parameters (� = 632.8 nm,  f = 4 cm)  in Eq.
(6) is shown in Fig. 1.

The radial Hilbert transform is another structured phase mask
which can serve to make an image edge-enhanced relative to the
input image in addition to increasing the key space. The radial
Hilbert phase function in log-polar coordinates (�, �) can be written
as:

H(�, �) = exp(iP�) (7)

where P denotes the order of transformation. It is apparent that the
opposite halves of any radial line of the mask have a relative phase
difference of P� radian. Therefore, for each radial line we have the
equivalent of a one-dimensional Hilbert transform of order P. The
radial Hilbert transform can be helpful in aligning the axis of the
optical setup [33–35]. The RHM of order P = 6 has been displayed in
Fig. 2.
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