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We  investigate  the modeling  of optimal  control  of  quantum  system  in Liouville  space  by  combining  clas-
sical  engineering  control  theory  with  quantum  theory.  Aiming  at  two  typical  models  of  optimal  control,
we  derive  the requirements  of  optimal  control  via  taking  the  expected  value  of  the  observable  physical
quantity  to  maximum  as performance  index,  which  forms  the bedrock  for  further  investigating  the  design
of  control  law.
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1. Introduction

Quantum information technologies are composed of quan-
tum computation, quantum communication and quantum control
[1–5]. Combining the principles of quantum mechanics and
approaches of classical engineering control, quantum control
implement controlling on the states of quantum system by means
of electrical field, magnetic field or electromagnetic field. From
1980s, researchers have made foundational work in modeling of
quantum control, controllability analysis and observability [6–8].
For the closed quantum system, people adopt the strategies of
open-loop control, optimal control, learning control and feed-
back control to realize quantum control, and the research results
achieved have successfully been applied in quantum inform, quan-
tum chemistry, laser cooling and new nanotechnology, etc. [9].

Quantum manipulation is essential for quantum information
processing, and the investigation of control strategy is most
important in quantum control. Presently, the control strategies
mainly involve learning control, feedback control, optimal con-
trol and Lyapunov control. Close-loop control should have become
the preferred approach in controlling complicated quantum sys-
tem; however, open-loop control remains the major method for
implementing open quantum system control owing to the unob-
servability of quantum states and the limitations of feedback
control. The optimal control plays significant role in quantum open-
loop control, based on which people have proposed the optimal
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control of population, optimal control of time and optimal con-
trol of energy for the open quantum system. Ref. [10] discussed
the strategy of utilizing the optimal control of middle bath model
to suppress decoherence. Up to now, however, the research on
discussing decoherence suppression with the method of optimal
control is seldom [11,12]. In previous work, Rabitz succeeded in
designing optimal control field and carrying out much research
based on optimal control theory [13,14]. In most present research
of optimal control, however, the subjects investigated are simple
and low-dimensional physical systems, forcing people neglect the
effect of other dimension on the controlling process and result,
which is practically unfavorable for the decoherence control in
quantum system.

In this paper, we  investigate the modeling of quantum sys-
tem under optimal control in quantum Liouville space. Aiming at
two typical models of quantum optimal control, we derive the
requirements of optimal control via taking the expected value
of the observable physical quantity to maximum as performance
index.

2. Theory model

The state of quantum system can be described by many ways.
When the system is in pure state, it can be described by the
wave function that evolves according to Schrodinger equation. The
density operator �̂(t) can also be used and is more convenient
under many conditions. It cannot only denote pure state but also
denote mixed state, especially can conveniently extend to infinite
dimensional physical space. Therefore, the density operator �̂(t) is
adopted to represent the state of system. In the Hilbert space Ĥ(t),
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the dynamical evolution of the system state satisfies the quantum
Liouville equation.

i�
∂

∂t
�̂(t) = [Ĥ(t), �̂(t)]. (1)

In the problem of optimal control in quantum system, the
extremum track must satisfy the state equation of the system.
Therefore, from a mathematical point of view, quantum optimal
control is namely the constrained functional extremum problem.

Generally, the description of quantum state is constructed in
Hilbert space. Whereas when the density operator �̂(t) is used to
describe the state evolution, it is more convenient to extend Hilbert
space to Liouville space. Each linear operator Â in Hilbert space
corresponds to a vector |Â〉〉 in Liouville space. Then, the quantum
Liouville equation in Liouville space can be written as

i�
∂

∂t
| �̂(t)〉〉 = �̂(t)| �̂(t)〉〉, (2)

where �̂(t) �̂(t) ≡ [Ĥ(t), �̂(t)] is called Liouville super operator.
The control on quantum system is realized usually through

interacting the externally applied optical field or electromagnetic
field with the dynamical variables of the system, which is equiva-
lent to introduce some Hamiltonian into the original Hamiltonian
to change the energy of the system. It is called coherent control
since such control way can keep the coherence invariant. Under
coherent control, the Hamiltonian is given as

Ĥ(t) = Ĥ0 + Ĥc(t). (3)

where Ĥ0 represents the original Hamiltonian of the controlled
quantum system and is usually time-independent. Ĥc(t) denotes
the interacting Hamiltonian between the control field and con-
trolled quantum system.

From the state parameter point of view, the control problem of
quantum system can be described as the problem of state transfer.
From the quantum measurement point of view, it is the problem
of expected value for a specified observable physical quantity. The
quantum state described by quantum mechanics is abstract mathe-
matical description and lacks any observable physical connotation.
Therefore, people are more interested in the time variation of the
observable physical quantity than that of the quantum state. The
control theory relies on measurement. Only the state performance
of the system is real-time known, the real-time control can be real-
ized. In this work, we mainly focus on the expected value of the
observable physical quantity. The performance index is taken as

MaxJ = 〈〈Â| �̂(tf )〉〉 −
∫ tf

t0

F[u(t), t] dt. (4)

which is an aggregative indicator. The first term represents the
average value of specified observable physical quantity at the ter-
minal time, and the second one closely relates with the externally
applied controlling parameter. It possesses explicit physical con-
notation that the average value of specified observable physical
operator Â is maximum at the terminal time. Obviously, such
aggregative indicator is the Bolza problem in optimal control.

3. Euler–Lagrange equation under the strategy of optimal
control

Applying the theory of optimal control to manipulate the phys-
ical systems require to determine the form of performance index
and control the tolerance of action based on the given state equation
and the boundary conditions. In this section, taking the expected
value of the observable physical quantity to maximum as perfor-
mance index, we propose the requirements for the optimal control
under the given initial time and initial state, namely focus on the
Euler–Lagrange equation under the strategy of optimal control.

3.1. The terminal time tf is given and the terminal state | �̂(tf )〉〉 is
optional

Practically, the processing of quantum information should be
completed in very limited time since the quantum system is
extremely easy to be influenced by external environment including
the measuring apparatus that leads to decoherence. It is namely the
foundation for the physical model that the terminal time is given
and the terminal state is optional.

Firstly, we introduce the n-dimensional Lagrange operator �(t) :

〈〈�(t)| = ( �∗
1(t) �∗

2(t) · · · �∗
n(t) ). (5)

which is a time-dependent function corresponding to dynamic
optimal problems. Combining with Eq. (4), the Lagrange function
is given as

L = 〈〈Â| �̂(tf )〉〉 −
∫ tf

t0

F[u(t), t] dt

−
∫ tf

t0

〈〈
�(t)

∣∣ [ ∂

∂t
− 1

i�
�̂(t)

] ∣∣ �̂(t)
〉〉

dt. (6)

By using subsection integration to solve the third term in the
right hand of above formula, the Lagrange function can be rewritten
as:

L = 〈〈Â| �̂(tf )〉〉 − 〈〈�(tf )| �̂(tf )〉〉 + 〈〈�(t0)| �̂(t0)〉〉

−
∫ tf

t0

F[u(t), t] dt +
∫ tf

t0

〈〈
�(t)

∣∣ 1
i�

�̂(t)
∣∣ �̂(t)

〉〉
dt

+
∫ tf

t0

〈〈
d�(t)

dt

∣∣ �̂(t)
〉〉

dt. (7)

In this paper, superscript “∼”denotes the optima of correspond-
ing state parameters or mechanical quantities, such as ˜̂�(t), ũ(t), t̃f

is respectively the optimum of �̂(t), u(t), tf . Notice that when tf is
given, the variation of Eq. (7) is caused by ı| �̂(t)〉〉, ı| �̂f (t)〉〉, ı|�(t)〉〉
and ıu. Then we  obtain:

ıL = ∂L

∂| �̂(t)〉〉ı| �̂(t)〉〉 + ∂L

∂|�(t)〉〉ı|�(t)〉〉

+ ∂L

∂| �̂(t = tf )〉〉ı| �̂(tf )〉〉 + ∂L

∂u
ıu. (8)

Utilizing the operator formulae in Liouville space:

〈〈Â|B̂〉〉∗ = 〈〈B̂|Â〉〉, 〈〈Â|Ĉ|B̂〉〉 = 〈〈B̂|Ĉ+Â〉〉
and combining with Eq. (2), after straightforward but complicated
deduction, we  obtain

∂L

∂| �̂(t)〉〉 =
∫ tf

t0

[
d

dt
− 1

i�
�̂(t)|�(t)〉〉

]∗
dt, (9)

∂L

∂
∣∣�(t)

〉〉 =
[

∂

∂t
− 1

i�
�̂(t)

] ∣∣ �̂(t)
〉〉

, (10)

∂L

∂| �̂(t = tf )〉〉 =
[
|Â〉〉 − |�(tf )〉〉

]∗
. (11)

The prerequisite of the Lagrange function L taking maximum is
that the variation of ıL is zero for arbitrary ı| �̂(t)〉〉, ı| �̂f (t)〉〉, ı|�(t)〉〉
and ıu. Then the following relations that the optimum satisfies are
obtained:

i�
∂

∂t
| ˜̂�(t)〉〉 = �̂(t)| ˜̂�(t)〉〉, (12)
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