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a  b  s  t  r  a  c  t

Given  the  Mayers–Lo–Chau  (MLC)  no-go  theorem,  unconditionally  secure  quantum  bit  commitment
(QBC)  is  impossible  and  hence  quantum  oblivious  transfer  (QOT)  based  on  QBC  is  insecure.  In  this paper,
we  propose  a secure  all-or-nothing  QOT  protocol  and  a one-out-of-two  QOT  protocol  respectively.  The
unique merit  of  the  proposed  protocols  lies  in  that  it is not  based  on  QBC  but based  on  an  untrusted  third
party.  Moreover,  the proposed  protocols  do  not  violate  Lo’s  no-go  theorem  so  that  their  security  can  be
achieved.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

As we know, the basic principles of quantum physics ensure
classical unattainable security in a lot of cryptography appli-
cations, such as quantum key distribution, one of the most
mature applications of quantum cryptography. However, some
no-go theorems show that quantum cryptography cannot sat-
isfy the security requirements for all tasks. For example, Mayers,
Lo and Chau demonstrated the insecurity of QBC (against an
Einstein–Podolsky–Rosen (EPR) type of attack with delayed mea-
surements) [1–3], which is referred to as the MLC  no-go theorem
and is a serious drawback in quantum cryptography. According to
the theorem, all QBC-based protocols are insecure and hence QOT
based on QBC is insecure unless the participants are restricted to
individual measurements [4]. And the Lo’s no-go theorem shows
that ideal one-sided two-party quantum secure computation [5] is
insecure and hence a one-out-of-two QOT is impossible either.

These remarks apply particularly to oblivious transfer (OT), an
important primitive extensively used in many cryptographic pro-
tocols [6–13]. There are two major types of OTs. The original one
[6] is simply known as oblivious transfer, also referred to as all-
or-nothing OT, in which a sender (say Alice) can send a one-bit
message b to a receiver (say Bob) through communication chan-
nels. Bob learns the value of b with the probability 50%, Bob knows
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whether he got b or not. Alice does not know whether Bob got b or
not. Another type of OT is called one-out-of-two oblivious transfer
[7] and allows Alice to send two  one-bit messages to Bob. Bob can
choose to receive either one of these two  messages but not both,
while Alice does not know Bob’s choice.

Given the MLC  no-go theorem and Lo’s no-go theorem, secure
QOT seems impossible. Intriguingly, He et al. [14] proposed an
all-or-nothing QOT protocol with stand-alone security. This QOT
protocol does not rigorously satisfy the definition of ideal one-
sided two-party quantum secure computation, on which the Lo’s
insecurity proof [5] was based. Thus it could evade the two no-go
theorems and remain unconditionally secure against the cheating
strategy in the Lo’s proof.

In mutually untrusted two-party and multiparty computations,
the party who takes charge of generating quantum signals has a
bigger advantage of cheating than the other parties. Obviously,
this strategy works for one-sided two-party quantum computation
including QBC and QOT. In fact, not only the QBC  and QOT  protocols,
but also the other quantum cryptographic protocols, such as con-
trolled quantum secure direct communication (CQSDC) protocols
[15], quantum secret sharing (QSS) [16,17], quantum direct com-
munication with authentication [18] and quantum signature [19]
and so on have similar hidden troubles.

As far as secure QOT is concerned, additional assumption is
necessary. In this paper an untrusted third party is introduced,
based on which we  propose two  protocols for all-or-nothing QOT
and one-out-of-two QOT respectively. Moreover, these two QOT
protocols do not belong to a class of protocols denied by the Lo’s
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no-go theorem of one-sided two-party secure computation [5],
and so their security can be achieved.

2. The description of QOT

Our protocols are based on the two-qubit entangled state with
the following form:

|� 〉AB = 1√
2

(|0〉A|ϕ0〉B + |1〉A|ϕ1〉B), (1)

where

|ϕ0〉 = cos
�

2
|0〉 + sin

�

2
|1〉, |ϕ1〉 = cos

�

2
|0〉 − sin

�

2
|1〉, (2)

where |ϕ0〉 and |ϕ1〉 represent the bits 0 and 1, respectively. The
parameter � ∈ (0,  �)/2. Qubits A and B in each pair compose SA
sequence {A1, A2, . . .,  An} and SB sequence {B1, B2, . . .,  Bn} respec-
tively.

Eq. (1) can be rewritten as

|� 〉AB = cos
�

2
| + 〉A|0〉B + sin

�

2
| − 〉A|1〉B, (3)

where

|+〉 = 1√
2

(|0〉 + |1〉) , |−〉 = 1√
2

(|0〉 − |1〉) .

2.1. All-or-nothing QOT

(1) The third party, Trent prepares n photon pairs in the same quan-
tum state |� 〉AB and sends SA sequence to Alice, SB sequence to
Bob respectively.

(2) Alice and Bob select checking mode or message mode on their
qubits respectively.
(2.1) For each qubit Ai, Alice selects checking mode with a prob-

ability of c, and message mode with a probability 1-c. Here
the selection of the value of c depends on whether Alice
can verify the honesty of Trent successfully.
i. Checking mode: Alice performs measurement on the

received qubit with {|+〉, |−〉} basis.
ii. Message mode:  Alice performs measurement on the

received qubit with {|0〉, |1〉} basis.
(2.2) For each qubit Bi, Bob selects checking mode with a proba-

bility of d, and message mode with a probability 1-d. Here
the selection of the value of d depends on whether Bob
can verify the honesty of Trent successfully.
i. Checking mode: Bob performs measurement on the

received qubit with {|0〉, |1〉} basis.
ii. Message mode: Bob subjects qubit Bi to a measurement

of P0 or P1. Here P0 = 1 − |ϕ1〉〈ϕ1| and P1 = 1 − |ϕ0〉〈ϕ0|
be (non-commuting) projection operators onto sub-
spaces orthogonal to |ϕ1〉 and |ϕ0〉, respectively.

(3) To verify the honesty of Trent, Alice and Bob select the mea-
surement results in the positions which they both select for
security check. For all checking qubits, Alice and Bob choose
the announcement order randomly to announce their measure-
ment results, i.e., Alice first, Bob second, or Bob first and Alice
second in a random order. If Alice’s and Bob’s measurement
results satisfy the correlations in Eq. (3), i.e., Alice’s measure-
ment result is |+〉 and Bob’s measurement result is |0〉; or Alice’s
measurement result is |−〉 and Bob’s measurement result is |1〉,
they can judge that Trent is honest and he has sent the genuine
quantum states |� 〉AB. (As usual, we assume noiseless chan-
nels.) They discard the measurement results in those positions
which not both of Alice and Bob select for security check and

remain the remaining measurement results, say n′ bits, which
are all known to Alice and a fraction of sin2 �/2  known to Bob.

(4) According to the conclusiveness of his measurement results,
Bob can determine two sets I0 = {i|conclusiveness} and I1 =
{i|inconclusiveness} from which some arbitrary elements can be
added or removed in order to get #I0 = #I1 =

⌊
(n′sin2 �)/2

⌋
=

m.
(5) Bob discloses to Alice the sets Is and I1−s for a random bit s that

he keeps secret.
(6) Alice chooses s′ ∈ {0, 1} at random and computes cs′ = ⊕

i ∈ Is′
ri,

where ri is Alice’s von Neumann measurement result on qubit
i. Then she publicly announces s′ and returns to Bob b ⊕ cs′ . If
s = s′, then Bob can compute ⊕

i ∈ I0

ri and obtain the bit b; other-

wise he fails to get it.

2.2. One-out-of-two QOT

In contrast to all-or-nothing QOT, the first four steps are same
so that the description of the one-out-of-two QOT protocol starts
from step (5′).

(5’) Bob sends (X,Y) = (U,V) or (X,Y) = (V,U) to Alice according to a
random bit j.

(6’) Alice computes c0 = ⊕
i ∈ X
ri and c1 = ⊕

i ∈ Y
ri, where ri is Alice’s von

Neumann measurement result on qubit i. Then she returns to
Bob b0 ⊕ c0 and b1 ⊕ c1.

(7’) Bob computes ⊕
i ∈ U
ri ∈ {c0, c1} and uses it to get the bit bj.

3. Proof of security

Large gaps always exist between theory and practice, and the
issue being discussed here is no exception. A problem that we
face is that the real-life implementation of quantum cryptogra-
phy protocols may  differ from the ideal design. For example, the
ideal single photon source required by the original BB84 proto-
col is unattainable in practice, and is thus often replaced by a
laser source that generates a weak coherent state. The presence
of multi-photons will cause the photon-number-splitting attack
[20]. Practical device imperfections such as imperfect single photon
detector, dark counts, the wave-length-dependent characteristic of
a fiber beam splitter and so on can lead to various types of attacks
[21–29].

Because it is impossible for us to consider all possible attacks on
our protocols, we assume that the security of our protocols depends
on six fundamental assumptions as follows:

Assumption 1. Trent, Alice and Bob’s physical locations are secure
and no unwanted information can be leaked to the outside.

Assumption 2. Alice and Bob have trusted random number gen-
erators.

Assumption 3. Alice and Bob have trusted classical devices to
store and process the classical data.

Assumption 4. Alice and Bob share an open authenticated classi-
cal channel.

Assumption 5. Quantum physics is correct.

Assumption 6. The quantum channel is ideal, i.e., noise-free and
no particle losses.

Next we prove generally that the protocols are secure against
some possible cheating strategy from Trent, Alice or Bob.
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