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This paper  proposes  a novel  approach  in double  random  phase  encryption  based  on compressive  frac-
tional  Fourier  transform  along  with  the  kernel  steering  regression.  The  method  increases  the  complexity
of the  image  by  using  fractional  Fourier  transform  and  taking  fewer  measurements  from  the image  data.
Numerical  results  are  given  to analyze  the  validity  of  this  technique.  Considering  natural  images  to  be
sparse  in  some  domain,  we  apply  a compressive  sensing  (CS)  approach  by using  a TwIST  algorithm.  The
encryption  process  has kernel  steering  regression  algorithm  for denoising  and  compressive  sensing  tech-
nique  for  image  compression  along  with  the fractional  Fourier  transform  that  makes  the  image  in  more
complex  form.

© 2014  Published  by  Elsevier  GmbH.

1. Introduction

Considering the threat of accessing and tempering data by an
unauthorized person, a secure transmission of multimedia infor-
mation like image data using the cryptography technique has
received attention in recent years. The encryption methods enable
security of data by converting the image into its complex form.
Unlike the text message, image encryption by traditional encryp-
tion algorithm such as RSA and DES are not suitable as large image
data takes a lot of time to encrypt [1]. Besides the electronic encryp-
tion [2], an optical encryption method is a more secure method as it
involves sophisticated optical techniques [3]. It enhances the secu-
rity of the data by scrambling the content which can be unlocked
only by the right decrypted key. Moreover, encryption possesses a
greater degree of freedom due to features such as phase, amplitude,
wavelength, polarization, and the time it takes for the information
to encrypt. Among the optical encryption methods such as digital
holography [3], multiplexing [4], Fresnel domain [5], polarized light
[6] and interferometry [7], the double random phase encryption
(DRPE) has widely accepted due to simple implementation, robust-
ness and easy application on different image formats viz. black and
white, gray level or colored images [8]. The DREP involves a random
phase mask in the input plane which whitens the input image and
a second random phase mask at the Fourier plane which whitens
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the Fourier spectrum. The random phase mask placed in the Fourier
plane serves as the only key in DREP scheme. Since we  always look
for ways to enhance the security of the data, the fractional Fourier
transformation (FRFT) involves an extra parameter of the transform
order from 0 to 1 [9,10]. Therefore, the transform order enlarges the
key space resulting in a higher security of data as compared to the
Fourier transformation (FT) [1].

Besides security, the database and communication problems are
also critical due to large data size and complexity. It has become
important to reduce the size of the data while preserving the
complexity. Recently, the compressive sensing (CS) technique has
gained a wide acceptance [11]. It states that most natural images
are sparse in some domain. In the conventional way, where we try
to sample as much data as possible, CS provides a platform to recon-
struct the data from a fewer measurements, i.e. if an image is sparse
in some domain, then a perfect recovery can be reconstructed from
its few measurements.

In this letter, we  propose a DRPE encryption method incorpo-
rating the FRFT and CS approaches along with the kernel steering
regression algorithm. Here, we  use a noisy image and apply ker-
nel regression for denoising. Further, FRFT enhances the degree of
freedom to decrypt an image under experiment, and CS reduces the
bandwidth of the data transmission.

2. CS approach

According to CS, small collections of non-adaptive linear
measurements of a compressible signal or image have enough
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Fig. 1. Schematic of CS approach.

measurements to reconstruct it perfectly [12,13]. Almost all natural
images have concise representations in some basis. The CS theory
can be summarized in the following ways:

y = ˚f = ˚�x (1)

where  ̊ represents the M × N measurement matrix, and y as a
M × 1 vector, while f is N × 1. The x is an image and � is the image
representation in some basis. The K-sparse image implies that it
has at most K non-zero elements and the rest are zeros. Here, K is
assumed to be much less than N. CS relies on signal sparsity and
the incoherence between the sensing matrix and the sparsifying
operator defined to be mutually coherence and can be expressed
as:

�(˚, � ) = √
n · max

1≤k,j≤n
|〈ϕk,  j〉| (2)

where ϕk,  j denotes the column vector of  ̊ and � respectively and
n is the length of the column vector. If  ̊ and � are highly correlated,
the coherence is large, else it is small. It follows �(˚, � ) ∈ [1,

√
n].

The CS approach is shown in Fig. 1 where the image is sparse in
some domain and from fewer measurement; a signal can be easily
extracted. Usually, natural images are sparse in some sparsifying
operator � (i.e. wavelet or DCT). We  can choose a Gaussian ran-
dom sensing basis as it is well known CS operator, which means
that it fits to signals sparsity in any domain having a mutual coher-
ence � ≈

√
2log N regardless of � . If both � and  ̊ of them are

uncorrelated, then x can be well recovered from n = O(d log N) mea-
surements if it satisfies the Restricted Isometry Property (RIP) [13].
Once the above conditions satisfy CS theory, we  can recover the
signal by using l1-norm minimization; the proposed reconstruc-
tion is given by f* = � x*, where x* is the solution to the convex
optimization program (||x||l1 :=

∑
i|xi|). Here, we  have chosen the

two-step iterative shrinkage threshold (TwIST) algorithm [14]. The
TwIST algorithm is composed of a least square minimization term.

3. DRPE using FRFT

The security of transmitted data depends on the complexity
of the random phase function and the key. The extraction proce-
dures using the FRFT techniques [9,15,16] are complex compared to
the conventional Fourier transform (FT) since FRFT provides extra
degree of freedom. The FRFT is a generalization of the FT [15]. In
case of FRFT, the parameters, such as Fractional orders and the
scaling factors along with the x and y-axis [16] make it complex
to decode as they serve as additional keys for image decryption.
Furthermore, the FRFT mixes the signal by rotating it through any
arbitrary angle in frequency-space domain. Here (˛, ˇ) = p�/2 are
the angles at which FRFT can be calculated.

In this method, the image is multiplied by independent random
phase functions and is transformed through the FRFT order. In a
two-dimensional case, the notation for FRFT is further discussed.
The ath order FRFT f˛ of a function f(x,y) is expressed as:

f ˛ =
∫ ∫ +∞

−∞
K˛(x, y; x′, y′)f (x, y)dxdy (3)

The f˛ is the transform kernel given by

K˛(x, y; x′, y′) = Aϕ exp[i�(x2 + y2 + x
′2 + y

′2)cot ϕ˛

− 2(xx′ + yy′)cot ϕ˛] (4)

where Aϕ = exp[− i� sgn(sin ϕ)/4 + iϕ/2], ϕ = ˛�/2 is the transform
angle and 0 < |˛|<2 is the range.

Fig. 2 shows a conventional double random phase encoding pro-
cess. Let’s say an image, I(x, y) is shuffled by two different random
phase functions, exp[i�1 and 2(x, y)]. An FRFT is performed through
an order of (˛, ˇ) where the range of the order is considered
between (− 2 to 2). Hence the final encrypted image E(x, y) can
be obtained by the FRFT order expressed as

E(x, y) = F˛{Fˇ{[I(x, y)exp[i�1(x, y)]exp[i�2(x, y)]}} (5)

where F˛,ˇ represents the order of FRFT. Similarly the decryption
procedure is defined as

D(x, y) = F−1
ˇ

{{F−1
˛ [E(x, y) exp[i�2(x, y)∗]} exp[i�1(x, y)]∗} (6)

where F−1
˛,ˇ

represents the inverse fractional Fourier transform

through the order of (˛, ˇ). The image I(x, y) is multiplied by the
random phase �1(x, y). An FRFT of ˛th order is taken and multi-
plied by random phase �2(x′, y′). Another bth order of FRFT gives the
encrypted image in the fractional domain. It is evident that random

Fig. 2. Conventional double random phase encoding process.
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