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The  transmission  equation  of  ultrashort  optical  pulse  in  the  high-order  dispersion  media  with  the
parabolic  law  (cubic–quintic)  nonlinearity  has  been  studied  with  the  help  of  the subsidiary  ordinary
differential  equation  expansion  method.  As a  result,  the  optical  solitons  and  triangular  periodic  solutions
are  obtained,  and  the  conditions  for exact  solutions  to exist  are  also  given.
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1. Introduction

The nonlinear Schrödinger equations are very essential for describing the propagation of optical pulse in various nonlinear media [1–8],
and seeking exact solutions of these equations are important in nonlinear science fields, especially the optical solitons, which are often
applied to optical communication areas since they can hold their shapes in the process of transmissions and collisions. It is well known
that the optical soliton is a very graceful kind of physical process, which is a balance of dispersion or (and) diffraction effect and nonlinear
effect.

The purpose of this paper is to look for analytical solutions of the following generalized nonlinear Schrödinger equation (GNLSE) [1],
which describes the propagation of ultrashort optical pulse in high-order dispersion, double-doped and loss (or gain) optical fibers:
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where u(�, �) is the complex envelope of the electrical field in a comoving frame, � and � are the spatial and temporal variable. In the
left-hand side of Eq. (1), the second, third, and fourth term represent the group velocity dispersion (GVD), third order dispersion (TOD), and
fourth order dispersion (FOD), ˇ2, ˇ3 and ˇ4 are GVD, TOD, and FOD coefficient, respectively. The fifth and sixth term represent the Kerr
and saturation nonlinearity, �1 and �2 are the Kerr nonlinear coefficient and saturation of the nonlinear refractive index coefficient. In the
right-hand side of Eq. (1), the first term represents loss (or gain) of optic fibers, � is the loss (� > 0) or gain (� < 0) coefficient. The second
and third term represent Raman and self-steepening effect, �R and s are the Raman and self-steepening effect coefficient, respectively.

To date, many methods have been developed to construct explicit solutions of the nonlinear equations, for instances, the homogeneous
balance method [9], the Jacobi elliptic function expansion method [10], the subsidiary ordinary differential equation (sub-ODE) expansion
method [11,12], the G′/G expansion method [13,14], the self-similar method [15,16], and so on. The aim of this paper is to construct exact
solutions of the Eq. (1) by using the sub-ODE expansion method. Finally, the optical solitons and triangular periodic solutions of Eq. (1) are
obtained, and the conditions of these solutions existed are also given.
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2. The sub-ODE and its solutions

In this paper, we use the following first-order nonlinear ordinary differential equation (also known as the Ricatti equation) as the
sub-ODE:

dϕ

d�
= a + bϕ2(�) (2)

where a and b are non-zero real constants.
Eq. (2) possesses soliton solutions and triangular periodic solutions, which are listed as follows:
Case A: Suppose that ab > 0, Eq. (1) has the triangular periodic solutions in the form:
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where �0 is the integration constant.
Case B: Suppose that ab < 0, Eq. (1) has the soliton solutions in the form:
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where �0 is the integration constant, tanh and coth are the hyperbolic tangent and hyperbolic cotangent function, respectively.

3. Analytical solutions to the GNLSE (1)

Assume that Eq. (1) admits exact traveling wave solutions in the form:

u(�, �) = A(�)ei(k�−c�), � = K� − v� (7)

Substituting u(�, �) into Eq. (1), and letting the real part and imaginary part be zero, we get

(6ˇ3 − ˇ4c)v3A′′′ + (6K  − 6ˇ2cv + ˇ4c3v − 18ˇ3c2v)A′ − 18svA2A′ + 3�A = 0 (8)

ˇ4v4A′′′′ − 48v�RA2A′ + 6v2(2ˇ2 − ˇ4c2 + 12ˇ3c)A′′ − 24(�1 + cs)A3 − 24�2A5 + (24k − 12ˇ2c2 + ˇ4c4 − 24ˇ3c3)A = 0 (9)

where K, v, k and c are real constants, A(�) is a real function of �, and A′, A′′, A′′′ and A′′′′ represent dA/d�, d2A/d�2, d3A/d�3 and d4A/d�4,
respectively.

Differentiating Eq. (8) with respect to � once, we  have

(6ˇ3 − ˇ4c)v3A′′′′ = −(6K − 6ˇ2cv − 18ˇ3c2v + ˇ4c3v)A′′ + 18svA2A′′ + 36svAA′2 − 3�A′ (10)

Substituting A′′′′ into Eq. (9), we obtain

v[6v(6ˇ3 − ˇ4c)(2ˇ2 − ˇ4c2 + 12ˇ3c) − ˇ4(6K  − 6ˇ2cv − 18ˇ3c2v + ˇ4c3v)] × A′′ + 18sˇ4v2A2A′′

+ 36sˇ4v2AA′2 − 3�ˇ4vA′  − 48v�R(6ˇ3 − ˇ4c)A2A′ + (24k − 12ˇ2c2 + ˇ4c4 − 24ˇ3c3)(6ˇ3 − ˇ4c)A

− 24(�1 + cs)(6ˇ3 − ˇ4c)A3 − 24�2(6ˇ3 − ˇ4c)A5 = 0 (11)

Now, we use sub-ODE expansion method to construct analytical solutions of the Eq. (11), the sub-ODE and its solutions are given in
Section 2. According to the homogeneous balance method, we  find Eq. (6) admits the following form solution:

A(�) = a0 + a1ϕ(�), a1 /= 0 (12)

where a0 and a1 are real constants to be determined later.
Inserting (2) and (12) into Eq. (11), we have

a1v[6v(6ˇ3 − ˇ4c)(2ˇ2 − ˇ4c2 + 12ˇ3c) − ˇ4(6K  − 6ˇ2cv − 18ˇ3c2v + ˇ4c3v)] × (2abϕ + 2b2ϕ3)

+ 18sˇ4v2a1(a0 + a1ϕ)2(2abϕ + 2b2ϕ3) + (24k − 12ˇ2c2 + ˇ4c4 − 24ˇ3c3)(6ˇ3 − ˇ4c)(a0 + a1ϕ)

+ 36sˇ4v2a2
1(a0 + a1ϕ)(a2 + 2abϕ2 + b2ϕ4) − 3�ˇ4va1(a + bϕ2) − 48v�Ra1 × (6ˇ3 − ˇ4c)(a0 + a1ϕ)2(a + bϕ2)

− 24(�1 + cs)(6ˇ3 − ˇ4c)(a0 + a1ϕ)3 − 24�2(6ˇ3 − ˇ4c)(a0 + a1ϕ)5 = 0 (13)

Gathering all terms with the same order of ϕ, and making the parameter of each order of ϕ equal to zero, thus, a series of algebraic
equations are got

ϕ0 : (24k − 12ˇ2c2 + ˇ4c4 − 24ˇ3c3)(6ˇ3 − ˇ4c)a0 + 36sˇ4v2a0a2
1a2 − 3�ˇ4va1a − 48v�Ra2

0a1a(6ˇ3 − ˇ4c)

− 24a3
0(�1 + cs)(6ˇ3 − ˇ4c) − 24�2a5

0(6ˇ3 − ˇ4c) = 0 (14)
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