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a  b  s  t  r  a  c  t

We  propose  a new  dimensionality  reduction  method  called  compressive  sensing  with  Gaussian  mixture
random  matrix  (CS-GMRM),  in  which  a novel  measurement  matrix  using  Gaussian  mixture  distribution
is  constructed  and  is proved  to satisfy  the  restricted  isometry  property.  The  CS-GMRM  method  projects
high-dimensional  vector  spaces  into  low-dimensional  ones  via a single  matrix  multiplication.  In  particu-
lar,  the  proposed  method  removes  the  need  of a training  process,  preserves  the  metric  information  of  the
original  vector  space,  and  requires  a  low  level  of  computational  complexity.  We  apply  our  method  to  the
problem  of  recognizing  human  action  from  video  sequences.  Experimental  results  show  that  the  proposed
method  is simultaneously  highly  effective  and  highly  efficient  for action  recognition,  and  outperforms
the  state-of-the-art  dimensionality  reduction  methods.
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1. Introduction

In recent years, human action recognition has attracted inten-
sive attention from computer vision community and machine
learning community due to the demands of various applications
such as intelligent video surveillance, online video information
retrieval, human-computer interaction, and smart robotics [1]. To
obtain high accuracy, many action recognition approaches tend to
extract rich information features from the actions which are usu-
ally represented by very high dimensional vectors. However, very
high dimensional features would not only cause poor recognition
performance due to the incapability of revealing the intrinsic prop-
erties of data, but also result in high computational complexity
which could be unacceptable in many situations such as real-time
applications. Therefore, in order to extract the inherent properties
hidden in the high-dimensional data and reduce the computational
complexity, the dimensionality reduction is an indispensable part
of many action recognition methods [2–5].

A large number of dimensionality reduction techniques, such
as principal component analysis (PCA), multidimensional scaling
(MDS), isometric feature map  (ISOMAP), and local linear embed-
ding (LLE), have been proposed in the past decades [6]. PCA is
a popular linear projection technique that uses low-dimensional
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latent data variables to represent the raw high-dimensional data
variables with maximal preserved variance [7]. MDS  is also a
linear method that attempts to reduce the dimension of data
in a distance-preserving manner [8,9]. ISOMAP and LLE both
belong to nonlinear methods. ISOMAP models the input data as a
high-dimensional manifold, utilizes the graph distance to approx-
imate the geodesic distance, and then maps the manifold into
low-dimensional embedding by keeping the distance relationship
among the data points intact [10,11]. LLE works in a similar way
to ISOMAP as it builds a graph representation of the input data. It
constructs the low-dimensional manifold of the data by keeping
local geometry properties, in which the point can be reconstructed
by a linear combination of its nearest neighbors [12,13]. Neverthe-
less, these methods require learning from a training set by tuning
parameters and are thus subject to limited generalization. In addi-
tion, a large amount of information might be lost owing to lack of
data variables, which will turn to degrade the recognition accuracy.
Finally, most conventional dimensionality reduction approaches
involve extremely time-consuming operations, such as eigenvalue
decomposition, which lead to high computational complexity.

Recently, compressive sensing (CS) arising as a novel field of
information theory, has provided a fundamentally new approach
to recovering certain signals that are sparse from a set of measure-
ments far fewer than the number of measurements required by
Shannon sampling theorem [14–16]. Implicitly, CS can be applied to
data compression and has been used in image and signal processing
[17,18].
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Fig. 1. Main components of the human action recognition framework.

In this paper, we propose a new dimensionality reduction
method called compressive sensing with Gaussian mixture random
matrix (CS-GMRM), in which a novel measurement matrix using
Gaussian mixture distribution is constructed and is shown to satisfy
the restricted isometry property (RIP). In addition, we use the fire-
fly algorithm (FA) [19] to optimize the construction of the GMRM.
The proposed CS-GMRM method maps high-dimensional vector
spaces into low-dimensional ones via a single matrix multiplica-
tion without any training process. We  then propose a human action
recognition framework incorporating our CS-GMRM method. The
main components of the framework are shown in Fig. 1. Experi-
mental results on two benchmark datasets show that the proposed
CS-GMRM method works quite well in human action recognition,
and performs favorably against the state-of-the-art dimensionality
reduction methods in terms of effectiveness and efficiency.

The rest of the paper is organized as follows: Section 2 intro-
duces the background theory concerning the CS and the FA,
respectively. In Section 3, we present the proposed method and
the action recognition framework in detail. Experimental studies
on benchmark action datasets are given in Section 4. We  conclude
the paper in Section 5.

2. Background theory

2.1. CS Preliminaries

Suppose that a vector x in RN is K-sparse with respect to some
bases. The measurements of x, denoted as a vector y in RM, M � N,
is defined as

y = ˚x, (1)

where  ̊ ∈ RM×N is a measurement matrix. Furthermore, if  ̊ sat-
isfies the RIP, then x can be exactly reconstructed from y with
overwhelming probability.  ̊ is said to satisfy the RIP if there exists
a constant ı ∈ (0, 1) such that

(1 − ı)||x||22 ≤ ||˚x||22 ≤ (1 + ı)||x||22 (2)

holds for all K-sparse vectors in RN [14].
Generally, verifying RIP of the measurement matrix  ̊ needs

an exhaustive search over

(
N
K

)
combinations, which results in

great computational complexity. In practice, we use a more eas-
ily computable metric, i.e., the coherence of a matrix, to evaluate
the performance of a measurement matrix. The coherence of the
measurement matrix ˚,  �(˚), is defined as

�(˚) = max
1≤i≤j≤N

|〈ϕi, ϕj〉|
||ϕi||2||ϕj||2

, (3)

where ϕi, ϕj are two columns of ˚,  and 〈ϕi, ϕj〉 denotes the inner
product of two columns [20]. Low coherence is expected and is
intimately related to the RIP [21].

2.2. Firefly algorithm

Firefly algorithm is a metaheuristic technique for solving opti-
mization problems [19], which mimics the behavior of social
fireflies. Typically, three simplified rules are adopted [22]:

(1) All fireflies are unisex so that one firefly will be attracted to
other fireflies regardless of their sex.

(2) Attractiveness is proportional to their brightness, thus each fly
tends to move toward the brighter one. The attractiveness is
proportional to the brightness which decreases with increas-
ing distance between flies. If there is no brighter one than a
particular firefly, it will move randomly.

(3) The brightness of a firefly is somehow related to the analytical
form of the objective function.

The two essential parts of the FA are: variation of light intensity
and movement dominated by attractiveness. The variation of light
intensity I is formulated as

Ii = f (xi), 1 ≤ i ≤ n (4)

where f( xi) denotes the objective function (fitness function), xi
represents a solution (the position of a firefly i), and n is the total
number of flies. The movement of a fly i, which is attracted to
another brighter fly j, is formulated as

xt+1
i

= xt
i + ˇ0e−�r2

(xt
i − xt

j ) + ˛εt
i , (5)

where r is the Euclidean distance between firefly i and firefly j, ˇ0 is
the attractiveness at r = 0,  ̨ and � are two  constants, and εi is a ran-
dom variable obeying a Gaussian distribution or a Lévy distribution
[23].

3. Proposed method

3.1. Measurement matrix for dimensionality reduction

Designing a measurement matrix satisfying RIP is of central
importance in dimensionality reduction. Motivated by Gaussian
mixture models (GMM)  presented in [24], we  construct a novel
measurement matrix ˚GM ∈ RMN called Gaussian mixture random
matrix (GMRM), each entry, denoted as �ij, of which is an inde-
pendent and identically distributed random variable following the
Gaussian mixture distribution

p(�ij) =
k∑

l=1

wlN(�ij|0, 1/(kMwl)), (6)

where k is the number of distributions, wl is the weight of the lth
Gaussian distribution satisfying 0 < wl < 1 and

∑k
l=1wl = 1, and

N(�ij|0, 1/(kMwl)) represents a Gaussian distribution with mean 0
and variance 1/(kMwl). The projection from y = ˚GM x is indeed a
dimensionality reduction and so likely loses information. However,
if ˚GM satisfies the RIP, then the metric structure of the origi-
nal high-dimensional space is preserved in the low-dimensional
compressed space, and little distance information is lost after the
projection [14].

Proposition 1. Given ε ∈ (0, 1), there exist positive constants a, b
depending only on ε such that ˚GM satisfies the RIP with probability
≥1 −2e−bM if M ≥ aK log(N/K).

Proof. We first show E(||˚GMx||22) = ||x||22. Let ˚i denote the ith
row of ˚GM, i = 1, . . .,  M,  then
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