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a  b  s  t  r  a  c  t

Multiresolution  analysis  based  image  fusion  methods  have  become  a hot  research  area.  However,  these
methods  may  not  suitable  for the  real-time  applications  due  to their complex  and  time-consuming  anal-
ysis process.  Therefore,  a fast mutual  modulation  fusion  (FMMF)  algorithm  for  multi-sensor  images  is
proposed.  First,  two  source  images  are  magnified  by factors  that  derive  from  the  ratio  of  the  corre-
sponding  pixel  energy  respectively;  then  an  offset  term  obtained  by computing  statistical  parameters
of  source  images  is added;  finally,  the  fused  image  is  obtained  by multiplying  the  previous  results.  The
proposed  method  concerns  only  addition  and  multiplication,  and  thus  is effective.  ‘Experiments’  shows
that  FMMF  algorithm  has  superior  performance  and  efficiency,  compared  with  some  algorithms  based
on multiresolution  analysis.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Due to the different physical properties of the image sensor,
multi-sensor images contain abundant complementary informa-
tion; some features of the scene can be seen in one image,
while invisible or not obvious in the others. Therefore, the fusion
algorithm should integrate the complementary information from
multiple images into the fused image that better describes the
scene than single source image and thus are more suitable for the
visual perception and computer processing tasks such as segmen-
tation, feature extraction, and object recognition [1]. According to
the stage where the fusion is performed, Pohl prompted that image
fusion can be classified into pixel-, feature- and decision-level [2].

For pixel-level image fusion, multiresolution analysis (MRA)
based fusion method is extensively investigated. The represen-
tative MRAs include pyramid decomposition such as Laplacian
pyramid (LP) [3], morphological pyramid (MP) [4], gradient pyra-
mid  (GP) [5], wavelet analysis such as discrete wavelet transform
(DWT) [6], shift-invariant discrete wavelet transform (SIDWT) [7],
and dual-tree complex wavelet transform (DTCWT) [8], and multi-
scale geometry analysis such as curvelet transform (CVT) [9],
contourlet transform (CT) [10], and non-subsampled contourlet
transform (NSCT) [11]. All MRA  based image fusion methods need
three steps: (i) perform an MRA  transform on each source image;
(ii) construct a composite MRA  representation according to some
fusion rules; (iii) obtain the fused image by applying the inverse

∗ Corresponding author.
E-mail addresses: liyufeng@swust.edu.cn, 491086521@qq.com (Y. Li).

transform on the composite MRA  representation. Since MRA  can
effectively extract the salient information of the source image at dif-
ferent decomposition levels, MRA  based image fusion can improve
the fusion performance. However, the process of MRA transform is
complex and time-consuming, for example, non-subsampled MRA
needs more computation time to yield a redundant representation
with the same size as the original image. In many cases, image
fusion is only a component of an image-based application sys-
tem that, before and/or after fusion, needs to process many other
complex works, such as de-noising, registration, target detection.
Although MRA  based image fusion can produce good fusion qual-
ity, it may  not be applied to the real-time system. In this paper,
we propose a fast mutual modulation fusion (FMMF) algorithm,
which is not only efficient due to its concerning only addition and
multiplication operations, but also effective due to its reasonable
fusion rules. The proposed method can be used to fuse multi-sensor
images such as infrared and visible images, and multimodal medical
images.

The rest of this paper is organized as follows. Section 2 describes
the framework of the fast mutual modulation fusion (FMMF) algo-
rithm and presents the fusion parameters. Section 3 analyzes the
fusion mechanism of FMMF.  Section 4 shows our experimental
results and compares the effectiveness and efficiency with other
fusion schemes. Section 5 concludes this paper.

2. Fusion algorithm

2.1. The description of fusion algorithm

Modulation is a common technique for signal processing. For
example, carrier signal can vary with the amplitude of an input
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Fig. 1. Flowchart of FMMF  algorithm.

signal by multiplying the input signal. This technique is also
employed to synthesize the complementary information from dif-
ferent source images. Brovey transform [12] is an example of the
modulation principle and is successfully used for remote sensing
image fusion. For multi-sensor image fusion, since some pixels
value may  be close or equal to 0, the product of source images
may  result in loss of complementary information. Therefore, the
simple multiplication modulation may  not suitable for multi-senor
images. Fortunately, according to Eckhon’s research, the shunt-
ing induced modulation coupling simultaneously chooses both
additive coupling and multiplicative coupling and can achieve
a nonlinear enhancement effect among closely spaced synaptic
inputs along a dendrite [13]. Following this idea, we propose the
fast mutual modulation fusion (FMMF) algorithm in this paper. The
algorithm workflow is illustrated in Fig. 1. First, two source images
are magnified by a multiplication factor respectively; next, an off-
set term is added to the magnified images; then, previous results
are multiplied; finally, the product is normalized to [0,1] to obtain
the fused image.

In Fig. 1, IA(i, j) and IB(i, j) are the source images; F(i, j) is the
fused result; (i, j) is the pixel coordinate. The FMMF  algorithm can
be described as

F (i,  j) =
(

ıA + ˇAIA (i, j)
)

×
(

ıB + ˇBIB (i, j)
)

(1)

where ˇA and ˇB are the multiplication factors; ıA and ıB are the
offset. The expanded form of (1) is

F (i,  j) = (ıA + ˇAIA (i, j)) × (ıB + ˇBIB (i, j))

= ıAıB +
(

ıBˇAIA (i, j) + ıAˇBIB (i, j)
)

+ ˇAˇBIA (i, j) IB (i, j)
(2)

where ıAıB is the offset term; (ıBˇAIA(i, j) + ıAˇBIB(i, j)) is the addi-
tion term; ˇAˇBIA(i, j)IB(i, j) is the product term. From Eqs. (1) and
(2), one can see that this fusion scheme is a nonlinear mutual
modulation model and has the advantages of both addition and
multiplication modulation.

2.2. Fusion parameters

The parameters ˇA and ˇB control the weights of the addition
term and the product term. Since the salient information or the
target features in the source images have higher intensity, we deter-
mine ˇA and ˇB according to the energy at each pixel location (i,
j)⎧⎪⎨
⎪⎩

ˇA (i, j) =
(

IA (i, j)
)2

(
IA (i, j)

)2 +
(

IB (i, j)
)2

ˇB (i, j) = 1 − ˇA (i, j)

(3)

The parameters ıA and ıB have more influence on the dynamic
range (contrast) and brightness of the fused image. The equiva-
lent number of looks (ENL) [14] is defined on mean and standard

Fig. 2. 1-D signals of infrared and visible image. The profile curves (c), (d) of visual
and infrared in the dash line.

deviation, which characterizes the whole brightness and contrast
of an image, and can describe the smoothness, detail and texture
information of an image. ENL is computed as follows:

ENL = �2

�2
(4)

where � is the mean of the image, � is the standard deviation of the
image. By using ENL, ıA and ıB can be defined as global parameters

ıA = ıB =

⎧⎨
⎩

e(d−10.0) if d≥1.0

2
1 + d4.0

if d < 1.0
(5)

where

d =

⎧⎪⎪⎨
⎪⎪⎩

ENLA

ENLB
if �A≥�B

ENLB

ENLA
if �A < �B

(6)

For improving the compatibility of the fusion algorithm, we set
ıA = ıB, thus the order has no limit to the source images in the fusion
process.

3. Analysis of the fusion mechanism

We  experimentally analyze the fusion mechanism of FMMF
algorithm. The concrete method is as follows:

(i) Sample a row of pixels from the visible image A and the infrared
image B respectively as shown in Fig. 2(a) and (b); then denote
these pixels as fA(i) and fB(i). Fig. 2(c) and (d) shows the vari-
ation of the intensity. It can be seen that the infrared signal
has less detail than the visible one and that the intensity of the
target (pedestrian) in the infrared signal is closely saturated.

(ii) Use our method to fuse fA(i) and fB(i); ıA and ıB are manually
adjusted in the range of [0, 1000]; ˇA and ˇB are calculated
according to Eq. (3). The fusion results are illustrated in Fig. 3
in which each curve describes the variation of the energy. Com-
pared with the original signal, one can find that the intensity
become weak in the fused signal when ıA = ıB = 0. Especially,
the intensity of the infrared target largely degrades because
ˇA is too small. With the increase of ıA and ıB, the fused results
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