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a  b  s  t  r  a  c  t

The  reconstructed  image  may  be distorted  by  geometry  artifacts  due to  the  presence  of  mechanical
misalignments  in  circular  cone-beam  computed  tomography  (CT)  system.  To avoid  geometry  artifacts
intervention,  a  novel  geometric  calibration  method  belonging  to the  iterative-type  methods,  which uses
a  dedicated  calibration  phantom  to determine  all geometry  parameters,  is  presented  in this  paper.  The
phantom  consists  of  two steel  balls,  and  the  trajectories  of  two  ball centers  are  two  circles  in circular
scan.  Minimization  of the  errors  between  the  predicted  trajectories  of ball  center  and  the  ideal  circles  is
the principle  in  the  proposed  method.  In  summary,  the  proposed  method  consists  of three  parts.  Firstly,
an efficient  description  of  geometry  which  reduces  the  number  of geometry  parameters  from  7  to  4
is  stated.  Then,  a nonlinear  least  square  model  depending  on  the  4 parameters  is derived.  At last,  the
Levenberg–Marquardt  algorithm  (LMA)  is applied  to solve  the  optimization  problem.  We  implemented
the  proposed  method  and  the classical  analytic  method  presented  by  Noo  et  al.  on real  data  in our  lab-
oratory cone-beam  CT. The  results  indicated  that  our method  could  provide  satisfactory  reconstructed
images  as  good  as  Noo’s  method.

©  2013  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Neither the medical CT nor the industrial CT can be used into
practice directly without geometric calibration, since the recon-
structed images may  be distorted severely by geometry artifacts
[1]. The circular scan is adopted for most applications in indus-
trial CT, and many available geometric calibration methods have
been developed. All the methods can be divided into three groups:
the analytic-type methods with calibration phantom, the iterative-
type ones with calibration phantom and the self-calibration ones
without any dedicated objects.

The geometry parameters can be obtained from explicit analytic
formulas by use of the analytic-type methods [2–8]. The analytic-
type methods have been used in industrial CT widely due to the
computational efficiency and high precision. The most classical
method of this group is Noo’s method [2] which contains valuable
insight into analytic methods. However, some geometry parame-
ters are always ignored in this group, e.g., the rotated angle of flat
detector along some row is assumed to be equivalent to zero in
Noo’s method.

The computational complexity of the second group is higher
than the first group, but the complete set of parameters can be
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determined. Some of these calibration procedures [9] calculate
the geometry parameters view by view, and just one projection
with the precise knowledge of reference point on the phantom is
acquired at each view angle. While other methods [10] need more
than one projection on the full circular-scan, and only the distances
among reference points are required. Although these methods are
sensitive to initial values, the optimal results always can be reached
because the measured geometry parameters are close to the true
ones in practical CT system.

Recently, the self-calibration methods were developed based
on iterative techniques [11–15], in which image entropy, sharp-
ness, etc. were used to evaluate tomographic image quality. The
main advantage of these methods is that the pre-calibration using
dedicated phantom is not required any more. However, the com-
putational costs of these methods are heavy due to the multiple
time-consuming image reconstructions. In addition, one kind of
image evaluation criterion, such as image entropy, may not be gen-
eral for different applications.

Our method belonging to the iterative-type methods needs mul-
tiple projections of a dedicated calibration phantom sampled on
the full circular-scan path. Some advantages of the analytic-type
methods are introduced into the method. Firstly, a modified cal-
ibration phantom with only 2 steel balls was designed in our
implementation. Secondly, just 4 geometry parameters need to
be determined because of the introduction of intersection point
between the flat detector and the line which passes through the
focal spot of X-ray source and is orthogonal to the rotation axis.
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Fig. 1. The calibration phantom consists of a disk and a cylinder of Lucite in which
two  metallic balls are positioned. The distance between two ball centers is measured
on  the scale of micrometers when manufactured.

In summary, our calibration procedure consists of four steps. The
first step is detecting the centroid coordinates of projected ball.
The second step is describing the efficient geometry which reduces
7 alignment parameters to 4. The third step is deriving a non-
linear least square model depending on the above 4 geometry
parameters. At last, the LMA  is applied to solve the optimization
problem.

The paper is organized as follows. After a brief description of
the calibration phantom and definition of geometry in Section 2,
the details of the proposed method are introduced in Section 3.
Experiments on real data are given in Section 4, and conclusions
are summarized in Section 5 at last.

2. Calibration phantom and definition of geometry

2.1. Calibration phantom

Rough suggested such a method that determined all geome-
try parameters from a series of projections of dedicated reference
points [9]. Steel ball bearings called reference points are often used
to constitute a calibration object to exhibit high contrast projec-
tion, e.g., PSD-2 calibration phantom contains 108 steel balls [16].
Generally, better calibration results can be achieved utilizing more
reference points during calibration procedure but resulting in over-
lapping with neighboring balls on projection image or increasing
computational complexity. In this framework, a phantom with only
2 steel balls was designed and manufactured which was motivated
by Noo’s work shown in Fig. 1.

A hollow cylinder in which two metallic balls are positioned
is placed on a disk of Lucite. The diameter of disk is 150 mm,
and the distance between two ball centers is a constant d. 8
holes are distributed on the disk spiral-shaped, so the rotation
radii of phantom can be tuned aiming to assure both balls are
visible on the projected image. Additionally, to assure one cylin-
der can be replaced by another under specific situations, a series
of cylinders with the distance between two ball centers varying
from 10 mm to 200 mm  with 10 mm increments are manufac-
tured.

Unless otherwise stated, the lowercase letters a and b represent
the upper and lower balls respectively in the following discus-
sion, e.g., coordinates (0,  ya

i
, za

i
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i
, zb
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Fig. 2. Coordinate system definition.

2.2. Coordinate system definition and geometrical parameters

2.2.1. Coordinate system definition
A general micro-focus industrial cone-beam CT system consists

of a micro-focus X-ray source, a stage with four degrees of freedom
and a flat-panel detector, which are mounted on an optical bench. In
the field of geometric calibration, the X-ray source is often regarded
as a point source.

To describe the geometry of the cone-beam CT system, two
coordinate systems referred as the 3D (three dimensional) object
coordinate system and 2D (two dimensional) detector coordinate
system were introduced in most reported publications [2,4]. In
our work, only one right-handed Cartesian coordinates x–y–z is
defined which is shown in Fig. 2. We  choose the center of flat
detector as the origin point. The axis perpendicular to the flat
detector is defined as the x-axis; y-axis and z-axis are parallel to
the horizontal and vertical direction of the flat detector, respec-
tively. The line passing through the focal spot S which is orthogonal
to the rotation axis intersects the flat detector at the point P.
And then the source–object–distance (SOD) equals length of line
segment SF and source–detector–distance (SDD) is equivalent to
length of line segment SP.  It is noted that SDD is not the short-
est distance from the X-ray source to the flat-panel detector. In
this coordinate system, the rotation axis may  be inclined and
have no intersection point with x-axis, and the focal spot may  be
apart from x-axis in respect that misalignments occurred in prac-
tice. As a consequence, these misalignments will lead to distorting
reconstructed images. Artifact-free reconstructed images can be
obtained only with the accurate knowledge of geometrical infor-
mation.

2.2.2. Geometrical parameters
As already stated above, the set of parameters existed in such a

circular cone-beam CT system are listed as follows:

(1) (xs, ys, zs), the coordinates of the X-ray focal spot in the given
system.

(2) �n, the unit direction vector of rotation axis ly, without loss of

generality n =
(

n1, n2,
√

1 − n2
1 − n2

2

)T

.

(3) (xl, yl, 0), the coordinates of intersection point between the
rotation axis ly and (x, y)-plane.

This leads to a total of 7 geometry parameters that need to be
determined accurately. Intuitively, the geometry can be obtained
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