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Beware the F test (or, how to compare variances)
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Biologists commonly compare variances among samples, to test whether underlying populations have
equal spread. However, despite warnings from statisticians, incorrect testing is rife. Here we show that
one of the most commonly employed of these tests, the F test, is extremely sensitive to deviations from
normality. The F test suffers greatly elevated false positive errors when the underlying distributions are
heavy tailed, a distribution feature that is very hard to detect using standard normality tests. We high-
light and assess a selection of parametric, jackknife and permutation tests, consider their performance in
terms of false positives, and power to detect signal when it exists, then show correct methods to compare
measures of variation among samples. Based on these assessments, we recommend using Levene's test,
BoxeAnderson test, jackknifing or permutation tests to compare variances when normality is in doubt.
Levene's and BoxeAnderson tests are the most powerful at small sample sizes, but the BoxeAnderson
test may not control type I error for extremely heavy-tailed distributions. As noted previously, do not use
F tests to compare variances.
© 2018 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Never use an F-test to test equality of variances (Van Valen, 2005,
page 30)

The effects of nonnormality on the distribution theories for the test
statistics … are catastrophic (Miller, 1998, page 264)

Evolutionary biologists and behavioral ecologists study varia-
tion alongside averages, and commonly wish to partition observed
variation among various causes. This is of course the basis of
analysis of variance (ANOVA) and its associated family of tests,
where variation is partitioned among and within experimental
treatments (predictors), to determine their influence on the
response variable(s).

Sometimes, however, we are also interested in comparing the
size of the variances themselves, among samples or treatments, to
ask is there more variation in A than in B? Classic examples include
comparing variation in behavioural plasticity, sex-specific variation
in fitness, variance in sex ratios, variance in dietary breadth or
preference, variation in preferred group size, and even how intra-
individual variation in trait size can affect mating success (e.g.

Brown & Robinson, 2016; Craft, 2016; Hosken, 2001; MacLeod &
Clutton Brock, 2013; Shafir, Menda, & Smith, 2005; Sutherland,
1985; reviewed in Krebs & Davies, 1978, 1997; Westneat & Fox,
2010).

Another common reason to compare sample variances is as a
diagnostic check for homogeneity of variance, prior to using
ANOVA. Given the importance of the question (‘Do the variances
differ?’), we seek a statistical test that tells us the probability of
detecting the observed signal were the null hypothesis to be true.
This P value is commonly considered ‘significant’ if it lies below the
conventional threshold of 0.05. So a test of variances must, if it is to
be accurate and effective, satisfy two statistical conditions. First, it
should have a low probability of concluding different variances
when in fact the samples are drawn from the same underlying
population. This is the type I (or false positive) error rate, and
conventionally it should be 0.05. Second, the test should have a
high probability of detecting a significant difference when samples
are drawn from populations with genuinely different variances.
This is called statistical ‘power’. Inevitably power decreases with
decreasing difference in variance between the underlying pop-
ulations, such that small differences in population variances can be
hard to detect.

A standard statistical approach, among biologists at least, is to
use the F test to askwhether variance ratios differ significantly from
unity. However, as Van Valen (1978, 2005), Miller (1998) and many
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other statisticians (e.g. Box, 1953) have noted, this is inappropriate.
Unfortunately, biologists have not heeded warnings from statisti-
cians (as we have noted when serving as both editors and referees),
and incorrect testing keeps occurring. As part of the continuing
battle against inappropriate and anticonservative (failure to control
type I error) statistical analyses, we reiterate points raised by Van
Valen (2005) and Miller (1998) by bringing this issue to the
attention of a larger audience. We provide a comparison of statis-
tical tests designed to compare sample variances, and use numer-
ical simulations to demonstrate risks of false positive and false
negative conclusions with increasingly severe deviations from
normality. We focus on absolute variation in continuous variables,
but point readers to Van Valen (1974) for suggestions on discrete
variables.

Denouncement of the F test might seem rather heretical, given
its deep roots in the statistical training of all biologists. The bad
news is that F tests of the equality of variances are highly sensitive
to deviations from normality of the underlying data distributions

(Fig. 1). Van Valen (2005) linked this sensitivity to violations of the
central limit theorem, but Miller (1998) attributed the problem
more properly to a direct mathematical dependence of the variance
of the sample variance on the kurtosis of the underlying probability
distribution, damped by the sample size. The F test is very insen-
sitive to the data's third moment, skew, but highly sensitive to its
fourth, kurtosis (Miller, 1998; Fig. 1). Kurtosis measures the clus-
tering of data around the mode, relative to variance: leptokurtic
distributions have most data clustered tightly around the mode,
coupled with very extreme values, and are therefore ‘heavy tailed’.
Platykurtic distributions are less clustered around the mode,
coupled with a paucity of extreme values, and are therefore ‘light
tailed’. Heavy-tailed distributions risk very high rates of falsely
positive F tests (i.e. type I error >0.05), while light-tailed distribu-
tions can yield painfully conservative tests (i.e. type I error <0.05).
The good news is that F tests used in standard ANOVA are very
robust to minor deviations from normality, for two reasons. First,
the numerator of ANOVA tests represents variance among means;
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Figure 1. The influence of kurtosis on F test comparisons of sample variances. (a) Probability distribution functions of a population's phenotypic measurement ‘Y’: normal/Gaussian
distribution (green); a heavy-tailed distribution (red; kurtosis parameter d ¼ 0.5) and a light-tailed distribution (blue; d ¼ 100). Each distribution has a mean of 0 and a standard
deviation of 1. From each population we draw two samples of N ¼ 30, mimicking the null hypothesis of no difference in variance. (bed) Histograms of the samples from each
population, and the results of F tests. In each case, darker bars show where the samples overlap. (b) Two samples drawn from a light-tailed distribution overlap considerably, have
similar variance (the spread of the grey and light blue bars is similar) and yield an F ratio close to 1. (c) Two samples from a normal distribution overlap, but the light green sample
has greater variance (although the P value correctly concludes not significantly so). (d) Two samples from a heavy-tailed population have overlapping means but the light red
sample has a much greater variance (and the P value yields a type I error). These scenarios have been chosen to mirror simulations of type I error rates.
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