
Optik 125 (2014) 4308–4312

Contents lists available at ScienceDirect

Optik

journa l homepage: www.e lsev ier .de / i j leo

Measurement of refractive index homogeneity of parallel
optical component

Xu Liu, Yong Liu, Hongzhen Jiang ∗, Huan Ren, Hua Ma, Liqun Chai, Xiaoyu Yang, Bo Chen
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 Sichuan, China

a r t i c l e i n f o

Article history:
Received 18 August 2013
Accepted 10 March 2014

Keywords:
Refractive index homogeneity
Parallel optical components
Fringe analysis

a b s t r a c t

In this paper, we present a method for enhancing the measurement capability of refractive index homo-
geneity for parallel optical components, which phase-shifting interferometry cannot handle with. With
the help of wavelength-modulation phase-shifting interferometry, a series of multiple-surface interfer-
ence fringes are obtained and analyzed by Fourier transform. Based on the fact that the interference
fringe corresponding to each interference cavity has its own variation frequency, the wavefront aber-
rations induced by each interference cavity are obtained and the refractive index homogeneity is then
obtained. It is proved by experiment that the enhanced method can measure the refractive index homo-
geneity of parallel optical components more accurately and conveniently compared with the traditional
measurement approach. Therefore, it will have potential application forwards in optical measurement
field.

© 2014 Elsevier GmbH. All rights reserved.

1. Introduction

Refractive index homogeneity of optical material is one of the
key factors that affect the quality of wavefront in high powered
laser systems, and local changes in the refractive index of the order
of 10−6 must be detected to guarantee the output beam quality.
A technique given by Twyman and Perry [1] separated refractive
index deviations from surface deformations, and this technique
has been improved by Roberts and Langenbeck [2], who obtained
results that are free from the influence of the interferometer com-
ponents. An alternative method is given by Johannes Schwider [3],
in which the variations of the refractive index apart from a lin-
ear slope, as well as the thickness variations of the glass block can
be measured and displayed with the help of four interferograms,
and this method is called traditional measurement approach in this
paper. However, this method cannot be used to measure the refrac-
tive index homogeneity of parallel optical components because the
wedge angle is usually less than 30′′. In this case, the light reflected
from the sample’s front and back surfaces will interfere with the
reference light simultaneously and produce multiple-surface inter-
ference fringes. To solve this problem, an available approach [4] is
to fill oil on one surface of the sample to reduce its reflection and
measure the wavefront aberrations caused by the other surface. But
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the surface of the sample might be destroyed during the oil-filling
procedure and the measurement accuracy will be influenced by the
uniformity of the oil layer.

As none of the mentioned methods can deal with the mea-
surement of refractive index homogeneity of parallel optical
components effectively, in this paper, we propose an enhanced
method based on the multiple-surface interference fringes analysis
[5–14] and the wavelength modulated phase-shifting interferom-
eter. The method can accurately measure the refractive index
homogeneity of optical components with wedge angle less than
30′′.

2. Principles

2.1. Description for measuring refractive index homogeneity

For the sample to be measured, its thickness can be expressed
as:

h(x, y) = h0 + h1(x, y) + h2(x, y), (1)

where the subscript x and y denote individual pixel locations in
each image, as shown in Fig. 1. In Eq. (1), h0 is the mean thickness
of the sample, h1(x, y) and h2(x, y) stand for the surface deviations of
sample. As the refractive index homogeneity �n(x, y) is assumed to
be small compared with the mean refractive index n0, the refractive
index of the sample can be written as:

n(x, y) = n0 + �n(x, y). (2)
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Fig. 1. Model of parallel optical component.

Fig. 2. Measurement of refractive index homogeneity by Fizeau interferometry.

According to the traditional measurement approach, four wave-
front aberrations should be measured by Fizeau interferometry, as
shown in Fig. 2. They can be written as follows [3]:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W1(x, y) = W0(x, y) + 2h1(x, y)

W2(x, y) = W0(x, y) − 2(n0 − 1)h1(x, y) − 2n0h2(x, y) − 2h0�n(x, y)

W3(x, y) = W0(x, y) − 2(n0 − 1)[h1(x, y) + h2(x, y)] − 2h0�n(x, y) + 2hr(x, y)

W4(x, y) = W0(x, y) + 2hr(x, y)

(3)

where W0(x, y) stands for the wavefront aberrations generated in
the interferometer itself. W1(x, y) stands for the wavefront aberra-
tions caused by the sample’s front surface (surface S1) and W0(x,
y). W2(x, y) denotes for the wavefront aberrations caused by the
sample’s front surface, refractive index homogeneity, back sur-
face (surface S2) and W0(x, y). The measuring light passes through
the sample and be reflected by reference flat (RF), forming the
wavefront aberration of W3(x, y). Specially, W4(x, y) stands for
the wavefront aberrations caused by the reference flat (surface
S3) and W0(x, y), in which hr(x, y) denotes for the surface devia-
tion of the reference flat. Combined with the wavefront aberrations
information, both the refractive index homogeneity (�n) and thick-
ness variation (�h) can be calculated from Eq. (3), which can be
expressed as:⎧⎪⎨
⎪⎩

�n(x, y) = 1
2h0

[(n0 − 1)(W2 − W1) − n0(W3 − W4)

�h(x, y) = h1(x, y) + h2(x, y) = 1
2

[(W3 − W4) − (W2 − W1)]

(4)

2.2. Wavefront aberrations measurement

Fig. 3 shows the principle of wavelength-modulated phase-
shifting Fizeau interferometry, in which S0 is the transmission flat,
S1 is the front surface of the sample, S2 is the back surface of the

Fig. 3. Principle of wavelength-modulated phase-shifting interferometry.

sample and S3 is the reference flat. Based on the fact that each
interference cavity (S0: S1, S1: S2, S0: S2, S0: S3, S1: S3 and S2: S3)
has a unique OPD, as shown in Fig. 3, we use wavelength modu-
lated phase-shifting interferometry to separate and evaluate each
of the interference patterns. By gradually varying the wavelength of
the laser source during measuring procedure, a series of multiple-
surface interference fringes can be collected. Then according to
the fact that each interference cavity has a unique modulation fre-
quency, we can now simultaneously measure and evaluate all the
wavefront aberrations shown in Eq. (3).

When the wavelength of the laser source changes from �0 to
�0 + k�� (k = 1, 2,. . ., M − 1), the interference intensity for the kth
frame of multiple-surface interference fringes can be expressed as:

I(x, y, k) =
5∑

i=0

ai(x, y) +
5∑

i=0

{
bi(x, y) cos

[
4�Li(x, y)

�0 + k · ��

]}
, (5)

where the subscript i denotes the ith group interference fringe
(i = 0, 1, 2, 3, 4, 5), and the parameter x and y denotes the indi-
vidual pixel locations in each image. In Eq. (5), ai is the background
intensity, bi is the modulation amplitude, Li(x, y) is the OPD of the

interference cavity corresponding to the ith group fringe. The varia-
tion of wavelength (k ��) is assumed to be further small compared
with the initial wavelength �0 (about 10−5:1 in experiment), so Eq.
(5) can be expressed as:

I(x, y, k)=a(x, y)+
5∑

i=0

{
bi(x, y) cos[�i(x, y) − 4�Li(x, y)

�2
0

· k · ��]

}

(6)

where �i(x, y) = 4�Li(x, y)/�0, and a(x, y) stands for the total inten-
sity of background for the kth frame.

2.3. Determination of unique modulation frequency for each
interference cavity

Consider again the interference cavity shown in Fig. 3. The sam-
ple is positioned at the specific distance from the reference flat and
transmission flat, where the relationship between L0, n0 and h0 can
be expressed as:

ε0 = n0h0

L0
, � = L3

L0
, (7)

where ε0 and � are constants, L0 and L3 stand for the OPD
corresponding to the interference cavity (S0: S1) and (S0: S3),
respectively. In order to obtain the wavefront aberrations we
needed, we should analyze their corresponding frequencies about
parameter k, which can be obtained from the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v0(x, y) = 2L0(x, y)

�2
0

��

v1(x, y) = 2n0(x, y)h0

�2
0

�� = ε0v0

v2(x, y) = 2[n0(x, y)h0 + L0(x, y)]

�2
0

�� = (ε0 + 1)v0

v2(x, y) = �v0

(8)
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