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a b s t r a c t

The Gabor expansion (GE), which maps the time domain signal into the joint time and frequency domain,
has been recognized as very useful for signal processing. However, sinusoidal analysis used in the tradi-
tional GE is not appropriate for a compact representation for chirp-type signals. In this paper, a generalized
Gabor expansion (GGE) is proposed in order to rectify the limitations of the GE, the proposed expansion
not only inherits the advantage of GE, but also has the capability of signal representations in the linear
canonical transform (LCT) domain which is similar to the LCT. Basis functions of the proposed expansion
are obtained via LCT basis. Compared with the traditional GE, the GGE can offer signal representations on
a general, non-rectangular time–frequency plane tiling. Besides, the completeness and biorthogonality
conditions of the GGE are derived.

© 2014 Elsevier GmbH. All rights reserved.

1. Introduction

Time–frequency (TF) analysis provides a characterization of sig-
nals in terms of joint time and frequency content [1,2]. One of the
fundamental issues in the TF analysis is obtaining of distribution
of signal energy over joint TF plane with sufficient time and fre-
quency resolutions. The Gabor expansion (GE) has been shown to
be an appropriate tool for TF analysis [3–5]. It represents a sig-
nal in terms of time and frequency shifted basis functions, and has
been used in various applications to analyze the time-varying fre-
quency content of signal [6,7]. However, under the extension of
research objects and scope, the GE has been discovered to have
short-comings. Since basis functions of the Gabor representation
are obtained by translating and modulating with sinusoids a signal
window function, resulting in a fixed and rectangular TF sampling
lattice. Therefore, sinusoidal analysis used in the traditional GE is
not appropriate for a compact representation for chirp-type sig-
nals, which are ubiquitous in nature and man-made systems, are
this kind of signals.

In order to rectify the limitations of GE, many of approaches
have been proposed to improve the solution of Gabor representa-
tions [6,8–17]. Such as: using large dictionary of basis functions
[6,10], averaging results obtained using different windows [9],
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maximizing energy concentration measures [8,11,12] and using
signal-adaptive basis functions to match the time-varying fre-
quency of the signal [13]. In recent works, the fractional Gabor
expansion representations on a general, non-rectangular TF lattice
have attracted a considerable attention [14–17]. A non-rectangular
lattice is more appropriate for the TF analysis of signals with time-
varying frequency content. Simultaneously, comparing to the FRFT
with one extra degree of freedom, linear canonical transform (LCT)
is more flexible for its extra three degree of freedom, and has been
used frequently in time–frequency analysis and non-stationary sig-
nal processing (particular for chirp signal) [18–26]. Inspired of
fractional GE, we introduce the concept of the generalized Gabor
expansion (GGE), combining the idea of GE and LCT. The proposed
transform not only inherits the advantages of GE, but also has the
capability of signal representations in the LCT domain which is sim-
ilar to LCT. In this paper, we present GGE for the time–frequency
representation of chirp signals. The new representation tiles the
TF plane in parallelogram shapes which clearly is a better way of
representing chirp signals than the traditional rectangular grid. The
basis functions of the proposed expansion are obtained via LCT basis
and they are impulses in the LCT domain. As a result, the time-
varying frequency content of a signal is represented better than
with sinusoidal modulated expansions. Besides, the biorthogonal-
ity relation between the synthesis and analysis functions for the
proposed expansion is derived.

The rest of this paper is organized as follows. Section 2 presents
the theoretical basis of GE, LCT and linear canonical series. In
Section 3, the GGE is proposed, moreover, the completeness and
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Fig. 1. Rectangular time–frequency plane sampling lattice used in the Gabor expan-
sion.

biorthogonality conditions of the GGE are derived. Finally, Section
4 concludes this paper.

2. Preliminaries

In this section, we give brief background on the Gabor expan-
sion (GE) and linear canonical transform (LCT). Also, we give an
introduction to the linear canonical series (LCS) expansion.

2.1. The Gabor expansion

The traditional GE represents a signal as s combination of time
and frequency translated basis functions, and has been used in var-
ious applications to analyze the time-varying frequency content of
a signal. For signal f(t), the GE is defined as

f (t) =
∞∑

m=−∞

∞∑
n=−∞

am,nhm,n(t) (1)

hm,n(t) = h(t − mT) ejnωt (2)

where T and ω represent time and frequency sampling intervals,
respectively. The synthesis function h(t) is subject to a unit energy
constraint.∫ +∞

−∞

∣∣h(t)
∣∣2

dt = 1 (3)

Once a specific window type is selected, there remain two free
parameters T and ω, whose choice is crucial as it directly effects
the existence, uniqueness, convergence and numerical stability of
the expansion. The conventional constrains,ωT = 2�, advocated by
Gabor are sensible and indeed optimal by criteria such as minimum
sampling rate and numerical stability. ωT < 2� is called over-
sampling which results in redundancy in the Gabor coefficients, and
ωT > 2� is called under-sampling which causes a loss of informa-
tion [4]. The GE represents a signal in terms of time and frequency
shifted basis functions, called TF atoms. This type of basis functions
generates a fixed and rectangular TF plane sampling. An example
of such a sampling geometry is shown in Fig. 1.

Although the GE has been recognized as a very useful tool in sig-
nal processing, its applications were limited due to the difficulties
associated with computing the Gabor coefficients am,n. In general,
the set of time and frequency shifted window functions hm,n do

not form an orthogonal basis for the square-summable continuous
functions space L2(R).

One solution to this problem, developed by Bastianns [14], is to
introduce an auxiliary function �(t) called the biorthogonal func-
tion. Then the Gabor coefficients {am,n} are evaluated via the use of
the so called biorthogonal function, defined via

am,n =
∫ +∞

−∞
f (t)�∗

m,n(t) dt (4)

where

�m,n(t) = �(t − mT) ejnωt (5)

and the asterisk denote complex conjugation. �(t) in (5) can also be
considered as an analysis function. Substituting (4) into (1) leads to
the completeness relation

∞∑
m=−∞

∞∑
n=−∞

hm,n(t)�∗
m,n(t′) = ı(t − t′) (6)

where ı(·) denotes the Dirac ı-function. Applied to the n-
summation of the Poisson-sum formula [27], the completeness
relation (6) leads to the following biorthogonality relationship
between �(t) and h(t):

2�

ω

∞∑
m=−∞

h(t − mT)�∗
(

t −
[

m + n
2�

ωT

])
= ın (7)

where n = 0, ±1, ±2, . . ., and the factor 2�/ωT represents the degree
of over-sampling. ıj indicates a Kronecher delta [4].

2.2. Linear canonical transform and linear canonical series

The linear canonical transform (LCT) provides a mathematical
model of paraxial propagation though quadratic phase systems
[19]. The LCT, which is a generalization of the FT, generalizes the
usual time and frequency domain representations of the signals to
the continuum of infinite LCT domains. The LCT of a signal f(t) with
parameter A = (a, b; c, d) is defined as [18–20]:

FA(u) = LA[f (t)](u) =

⎧⎨
⎩

∫ ∞

−∞
f (t)KA(t, u) dt, b /= 0,

√
dej1/2cdu2

f (du), b = 0.

(8)

where

KA(t, u) =
√

1
j2�b

ej1/2[(a/b)t2−(2/b)tu+(d/b)u2] (9)

a, b, c, d are real numbers satisfying ad − bc = 1. It should be noted
that, when b = 0, the LCT of a signal is essentially a chirp multipli-
cation and it will not be discussed in this paper.

The transform matrix A is useful in the analysis of optical sys-
tems because if several systems are cascaded, the overall system
matrix can be found by multiplying the corresponding matrices.
The LCT family includes the Fourier and fractional Fourier trans-
forms, coordinate scaling, and chirp multiplication and convolution
operations as its special cases [19].

In the following, based on the LCT, the linear canonical series
(LCS) is introduced, which is the generalized pattern of Fourier
series [28,29]. In can reveal the mixed time and frequency
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