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a b s t r a c t

The wavelet transform (WT) and linear canonical transform (LCT) have been shown to be powerful tool
for optics and signal processing. In this paper, firstly, we introduce a novel time-frequency transformation
tool coined the generalized wavelet transform (GWT), based on the idea of the LCT and WT. Then, we
derive some fundamental results of this transform, including its basis properties, inner product theorem
and convolution theorem, inverse formula and admissibility condition. Further, we also discuss the time-
fractional-frequency resolution of the GWT. The GWT is capable of representing signals in the time-
fractional-frequency plane. Last, some potential applications of the GWT are also presented to show the
advantage of the theory. The GWT can circumvent the limitations of the WT and the LCT.

© 2014 Elsevier GmbH. All rights reserved.

1. Introduction

The wavelet transform (WT), which has had a growing impor-
tance in optics and signal processing, has been shown to be a
successful tool for time-frequency analysis and image processing
[1]. It has found many applications in time-dependent frequency
analysis of short-transient signals, data compression, optical cor-
relators, sound analysis, representation of fractal aggregates and
many others [1–7]. However, the signal analysis capability of the
WT is limited in the time-frequency plane. Therefore, the WT is inef-
ficient for processing signals whose energy is not well concentrated
in the frequency domain.

Now, many of novel signal processing tools have been proposed
to rectify the limitations of the WT, and can provide signal rep-
resentation in the fractional domain. Such as fractional Fourier
transform (FRFT) [8], the Radon–Wigner transform [9], the frac-
tional wavelet transform (FRWT) [10–14], fractional wave packet
transform (FRWPT) [15], the short-time FRFT [16], the LCT [17–20]
and so on. In the past decade, although the FRFT has attracted much
attention of the signal processing community, it cannot obtain
information about local properties of the signal. Therefore, the
FRWT fails in obtaining information about local properties of the
signal [10–12]. Simultaneously, the drawback of the short-time
FRFT is that its time and fractional domain resolutions cannot
simultaneously be arbitrarily high [16]. The FRWPT did not receive
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much attention for the lack of physical interpretation and high com-
putation complexity [15]. The LCT [17–20], which was introduced
during the 1970s with four parameters, has been proven to be one
of the most powerful tools for non-stationary signal processing.
The well-known signal processing operations, such as the Fourier
transform (FT), the FRFT, the Fresnel transform, and the scaling
operations are all special cases of the LCT [18,19]. The LCT has
also found many applications in the solution of optical systems, fil-
ter design, time-frequency analysis and many others [21–31]. This
transform, however, has one major drawback due to using global
kernel, i.e., the LCT representation only provides such LCT spec-
tral content with no indication about the time localization of the
LCT spectral components [19,20]. Therefore, the analysis of non-
stationary signals whose LCT spectral characteristics change with
time requires joint signal representations in both time and LCT
domains, rather than just a LCT domain representation.

As a generalization of the WT, a novel FRWT can combine the
advantages of the WT and the FRFT, i.e., it is a linear transforma-
tion without cross-term interference and is capable of providing
multiresolution analysis and representing signal in the fractional
domain [13,14]. Simultaneously, comparing to the FRFT with one
extra degree of freedom, LCT is more flexible for its extra three
degree of freedom, and has been used frequently in time-frequency
analysis and non-stationary signal processing. Inspired of FRWT, we
introduce the concept of the generalized wavelet transform (GWT),
combining the idea of LCT and WT. the proposed transform not only
inherits the advantages of multiresolution analysis of the WT, but
also has the capability of signal representations in the LCT domain
which is similar to LCT. Compared with the existing FRWT, the GWT
can offer signal representations in the time-fractional-frequency
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plane in LCT domain. Besides, it has explicit physical interpretation,
low computation complexity and usefulness for practical applica-
tion.

The rest of this paper is organized as follows. Section 2 presents
the theoretical basis of WT, LCT and convolution theory. In Section
3, the GWT is proposed. Moreover, some fundamental results of
this transform are presented, including its basis properties, theo-
rems, inverse formula and admissibility condition. In Section 4, the
time-fractional-frequency analysis of the GWT is discussed. Poten-
tial applications for GWT are presented in section 5. Finally, Section
6 concludes this paper.

2. Preliminaries

2.1. Fourier transform and wavelet transform

Fourier transform (FT) is a tool widely applied for signal
processing. In this paper, the FT is defined as follows [28]:

F(u) =�(f (x))(u) =
∫ ∞
−∞

f (x) e−jux dx (1)

f (x) = 1
2�

∫ ∞
−∞

F(u) ejux du (2)

where � denotes the FT operator and is also used in the subsequent
sections. In the following section, Asymmetric definition of the FT
is utilized in this paper.

The conventional convolution of two signals f(x) and g(x) is
defined as

f (x) ∗ g(x) =
∫ ∞
−∞

f (�)g(x − �) d� =
〈

f (.), ḡ(x − .)
〉

(3)

where * and the bar-in the subscript denote the conventional con-
volution operator and the complex conjugate, respectively, and 〈., .〉
indicates the inner product. To be specific, the convolution theorem
of the FT for the signals f(x) and g(x) with associated FTs, F(u) and
G(u), respectively is given by:

f (x) ∗ g(x)
�←→F(u)G(u) (4)

A one-dimensional wavelet transform (WT) of a signal f(x) is
defined as [1]

Wf (a, b) =W(f (x))(u) =
∫ ∞
−∞

f (x) h̄ab(x) dx (5)

It can be also defined as a conventional convolution, i.e.,

Wf (a, b) = f (x) ∗ (a−1/2h̄(−x/a)) =
〈

f (.), hab(.)
〉

(6)

where the kernel hab(x) is a continuous affine transformation of the
mother wavelet function h(x),

hab (x) = 1√
a

h
(

x − b

a

)
(7)

where b is the shift amount, a is the scale parameter, and
√

a is the
normalization factor. Based on the conventional convolution theo-
rem and inverse FT, the WT of the signal f(x) can be also expressed
as:

Wf (a, b) =
∫ ∞
−∞

√
aF(u) H̄(au) ejub du (8)

where F(u) and H(u) denote the FT of f(x) and h(x), respectively.
Since H(0) =

∫ +∞
−∞ h(x) dx = 0, each wavelet component is actually

a differently scaled bandpass filter, the wavelet transform is a local-
ized transformation and thus is efficient for processing transient
signals. However, WT is inefficient for processing signals whose

energy is not well concentrated in the frequency domain. Thus,
signal analysis associated with it is limited to the time-frequency
plane.

2.2. Linear canonical transform and convolution theorem

The linear canonical transform (LCT) provides a mathematical
model of paraxial propagation though quadratic phase systems. The
output light field FT (u) a quadratic phase systems is related to its
input field f(x) through [19]

FT (u) = LT [f (x)](u) =

⎧⎨
⎩
∫ ∞
−∞

f (x)KT (u, x) dx, b /= 0,

√
Dej(1/2)CDu2

f (Du), b = 0,

(9)

where

KT (u, x) =
√

1
(j2�B)

ej(1/2)[(A/B)x2−(2/B)xu+(D/B)u2], (10)

where LT is the unitary LCT operator with parameter matrix T =
(A, B; C, D), A,B,C,D are real numbers satisfying AD−BC = 1. The
inverse transform for LCT is given by a LCT having parameter
T−1 = (D,−B;−C, A), that is

f (x) =
∫ ∞
−∞

FT (u)K̄T (u, x) du (11)

The transform matrix T is useful in the analysis of optical sys-
tems because if several systems are cascaded, the overall system
matrix can be found by multiplying the corresponding matrices.
It should be noted that, when B = 0, the LCT of a signal is essen-
tially a chirp multiplication and it is of no particular interest to our
objective in this work, so it will not be discussed in this paper. The
LCT family includes the FT and FRFT, coordinate scaling, and chirp
multiplication and convolution operations as its special cases. For
further details about the definition and properties of LCT, [17–20]
can be referred.

Contrast with FT, the LCT has a number of unique properties, and
it has been widely applied in optics and signal processing. However,
the LCT is a global transformation, it cannot obtain information
about local properties of the signal. In other word, the LCT tells
us the fractional frequencies that exist across the whole duration
of the signal but not the fractional frequencies which exist only at
a particular time.

A convolution and product structures of the LCT is introduced
in [28]

f (x)	 g(x) = e−jAx2/(2B)
[

(f (x) ejAx2/(2B)) ∗ g(x)
]

(12)

where	 is the generalized convolution operation for the LCT. Then,
the convolution theorem of the LCT for the signal f(x) and g(x)is
given by

f (x)	 g(x)
LT

←→FT (u)G(u/B) (13)

where FT(u) and G(u) denotes the LCT of f(x) and the FT of g(x),
respectively. Particularly, when T = (0, 1 ;−1, 0), (12) reduces to the
conventional convolution as given by (3).

3. Generalized wavelet transform

3.1. Definition of generalized wavelet transform

In this subsection, we defined a generalized wavelet transform
(GWT) based on the convolution operation in LCT domain. The
GWT of a square integrable signal f(x) is defined as
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