
Optik 125 (2014) 4552–4556

Contents lists available at ScienceDirect

Optik

journa l homepage: www.e lsev ier .de / i j leo

Study of femtosecond soliton dynamics in photonic crystal fiber using
the moment method

Mourad Mahboub ∗, Djamel Bekhti
Faculty of Sciences, University of Tlemcen, BP.119 Tlemcen, Algeria

a r t i c l e i n f o

Article history:
Received 11 August 2013
Accepted 20 February 2014

Keywords:
Generalized nonlinear Schrödinger
equation
High-order dispersion
Moment method
Soliton self-frequency shift

a b s t r a c t

We investigate the dynamics of femtosecond solitons in photonic crystal fibers (PCFs) by including high-
order dispersion terms until to sixth-order in the generalized nonlinear Schrödinger equation, in addition
to the nonlinear effects of the self phase modulation, self steepening and Raman scattering. We calculate
theoretically the pulse parameters using the moment method. In the case of the fundamental soliton, our
computed equations are coupled and difficult to solve analytically. However, we use the finite difference
method to calculate numerically pulse parameters using an initially hyperbolic secant pulse at 1550-nm
with different peak powers along 10m-PCF. Our numerical results show that the nonlinear regimes allow
obtaining pulse compressions and initial pulse amplitudes. Furthermore, we remark a pulse broadening,
and weak shifts of the peak power positions and frequencies in the critical and dispersive regimes. The use
of an initial chirp provides a better pulse compressions and especially for low input powers. Also, the initial
positive chirp reduces the optimal compression position lengths, while the negative one increases them.
Therefore, we conclude that our theoretical calculations and numerical simulation results show that the
moment method associated with the finite differences method is effective for the study of femtosecond
pulse dynamics in PCFs.

© 2014 Elsevier GmbH. All rights reserved.

1. Introduction

The photonic crystal fibers (PCFs) are actually used in a great
number of application areas like telecommunication, biology and
sensors. The PCFs allow the control of dispersion and nonlinear
effects during the engineering and a fabrication process. Several
designs for the nearly zero ultra-flattened chromatic dispersion
photonic crystal fiber have been proposed [1–5], and some highly
nonlinear glasses such as chalcogenide have been introduced in
the realization of PCF in order to obtain large nonlinearities and
excellent transmission at the infrared wavelengths [6–8]. The
chalcogenide nonlinear Kerr effect can be as much as ∼900× that
in silica [9,10].

The propagation of femtosecond pulses in PCFs is described by
the generalized nonlinear Schrödinger equation (GNLSE), where
linear and nonlinear effects including the high order dispersions
(HOD), self phase modulation (SPM), self steepening and Raman
scattering are considered [11]. The intrapulse Raman scatter-
ing induces a frequency downshift in a soliton subpicosecond
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regime. This effect is known as soliton self frequency shift (SSFS).
Golovchenko et al. [12] have first discovered in 1985 the red shift
of an ultrashort optical pulse spectrum in the anomalous regime.
In 1986, the effect of the SSFS was first observed experimentally
by Mitschke and Mollenauer for pulses shorter than 1 ps [13], and
Gordon used a perturbation theory of solitons to demonstrate the-
oretically that the rate of the SSFS is approximately proportional to
�−4, where � is the pulse temporal width [14,15]. Santhanam and
Agrawal [16] have used the moment method to show that such
a spectral shift occurs both in the normal and anomalous disper-
sion regimes, depends on the initial width and chirp associated
with an optical pulse. The problem of the dynamics of solitons near
the zero-dispersion wavelength (ZDW) has been well studied tak-
ing into account the higher orders of linear and nonlinear effects.
The studies were restricted mainly to the action of the third-order
dispersion (TOD) [17–19]. Tsoy and de Sterke [15] analyzed the
effect of the quadratic dispersion (QD) for optical fibers containing
a double ZDW where dispersion can have two regions of anomalous
GVD separated by a region of normal one. Fedotov et al. [20] have
demonstrated a spectral compression based on SSFS using a highly
nonlinear PCF with ZDW at 750 nm, where a spectral-compression
factor of 6.5 has been obtained for 50-fs, 1270-nm solitons red-
shifted to a center wavelength of 1580 nm [21]. The impact of PCF
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positive TOD and initial pulse chirp on spectral-compression per-
formance has been numerically investigated for 50-fs, 1550-nm
pulses propagating in anomalously dispersive PCFs [21,22].

The aim of this work is to include the HOD effects terms until
to sixth-order in the GNLSE equation, in addition to the nonlinear
effects of the SPM, self steepening and Raman scattering, to calcu-
late theoretically pulse parameters using the moment method. We
do not consider the weak interaction between a soliton and radiated
waves. Therefore, we neglect the energy losses in PCFs. Consider-
ing the fundamental soliton, our computed equations are coupled
and difficult to solve analytically. So, we use the finite difference
method to determine numerically pulse parameters. We present
there numerical evolution in terms of the PCF length z, using the
measured linear and nonlinear characteristics of a PCF found in
the references [4–7]. We first consider the propagation of an ini-
tially unchirped 100 fs hyperbolic secant pulse at 1550-nm with
different peak powers P0 = 0.4, 0.56, 0.7 and 1 kW along 10m-PCF.
Our numerical results show that the nonlinear regime P0 = 0.7 kW
and 1 kW allows obtaining pulse compressions to 67.3 fs and 39.3 fs
and peak powers of 1.02 kW and 2.54 kW for respectively 3 m and
1.9 m of the PCF length. As we can see some lengths of PCF where
pulse amplitude takes its original form, although these solitons are
chirped and shifted in time and frequency. Furthermore, we remark
a pulse broadening, and a weak shifts of the peak power position T
and frequency Ù in the critical P0 = 0.56 kW (the soliton number is
equal to 1) and dispersive P0 = 0.4 kW regimes. However, the use of
an initial chirp provides a better pulse compressions and especially
for low input powers. Also, the initial positive chirp reduces optimal
compression position lengths zc, while the negative one increases
them. Therefore, we conclude that our theoretical calculations and
numerical simulation results show that the moment method asso-
ciated with the finite differences method is effective for the study
of femtosecond pulse dynamics in PCFs.

We present in Section 2, the GNLSE model that describes the
propagation of ultrashort pulses equation, using dispersion terms
until to sixth-order, SPM, self steepening and Raman effects. The
soliton parameters calculation by the moment method is described
in Section 3, analysis and application to the fundamental soliton
are given in Section 4. Then, we present our numerical simulation
results in Section 5 and finally we give our conclusions for this work.

2. GNLSE model

The equation that describes the propagation of the ultrashort
pulses in PCFs, including dispersion until to sixth-order, SPM,
self steepening and Raman effects is the generalized nonlinear
Schrödinger equation (GNLSE) given by

∂B

∂z
+ iˇ2

2
∂2

B

∂t2
− ˇ3

6
∂3

B

∂t3
+ iˇ4

24
∂4

B

∂t4
− ˇ5

120
∂5

B

∂t5
+ iˇ6

720
∂6

B

∂t6

= i�

(
|B|2B + i

ω0

∂
∂t

(|B|2B) − TRB
∂|B|2

∂t

)
(1)

where B(z,t) is the envelope of the slowly varying pulse, ˇj
(j = 1,. . .,6) is the jth-order dispersion coefficient at the pump fre-
quency ω0, and � is the nonlinear coefficient of the SPM due to
optical Kerr effect. TR is the Raman time constant estimated from
the slope of the Raman gain spectrum (stimulated Raman scatter-
ing (SRS)). The quantity t = t′ − z/vg is the retarded time where z
is the position along the fiber, t’ is the physical time and vg is the
group velocity at the center wavelength �0.

3. Pulse parameters computation using the moment
method

The basic idea of the moment method is to treat the optical pulse
as a particle [16] whose energy E, position T frequency ˝ variance
�2, and chirp C̃ are defined by
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Obviously, the evolution of these parameters depends on that
of the pulse itself in the fiber which is governed by the GNLSE.
Using Eqs. (1)–(6), we obtain the evolution of pulse parameters
with respect to z. For this, we first differentiated the Eqs. (2)–(6)
with respect to z. Then, the term ∂B

∂z
appeared in the second mem-

ber of each equation, we have substituted that of the Eq. (1). Thus,
we integrate by parts the new equations taking into account that
the field must vanish at infinity. So B(z,t), ∂n

B
∂tn and ∂n

B∗
∂tn converge

exponentially to zero at t → ±∞. Finally, we obtain the following
equations:
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