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a  b  s  t  r  a  c  t

This  paper  introduces  an  orthogonal  multilinear  discriminant  analysis  (OMDA)  algorithm  for  gait  recog-
nition.  The  discriminant  feature  vectors  of OMDA  are  orthogonal  to each  other.  With  the  advantage  of
extracting  a portion  of local  information  and reducing  computational  complexity,  the  subblock  tensor
analysis  is employed  to  OMDA,  named  subblock  orthogonal  multilinear  discriminant  analysis  (SOMDA).
Considering  that the  vectors  from  different  subblocks  have different  contributions  to  recognition,  these
vectors  are  given  different  weights  and  synthesized  into  a whole  vector  in the  recognition  process.  We
have conducted  a comparative  study  on  gait recognition  to evaluate  OMDA  and  SOMDA  in terms  of  clas-
sification.  With  the  tensor  vectorization  methods  according  to both  variance  and  class  discriminability,
the  OMDA-based  recognition  algorithm  indicates  that  it outperforms  other  multilinear  subspace  solu-
tions  such  as  MPCA,  MPCA  +  LDA,  GTDA,  DATER  and  UMDA.  In the  subblock  experiments,  it  indicates  that
SOMDA  is  an  improvement  over OMDA.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In recent years, the high demand for intelligent system appli-
cations of artificial intelligence techniques are increasing due to
the development of information technology. To date, a number of
techniques have been provided and studied for authentication and
identification, most using smart cards, face [1], fusion information
obtained from face, teeth and voice modalities [2] and so on. They
not only can withstand against password attacks, but can yield
acceptable performance. However, the above-mentioned informa-
tion is not available at a distance. Gait has the advantages of being
noninvasive, non-contact, insensitive to environment and hard to
conceal, and it is probably the only biometric available at a distance
[3].

Lu et al. [4] proposed Multilinear Principal Component Analy-
sis (MPCA) and operated directly on the tensorial representations
rather than vectorized versions. It is well understood that
such reshaping (vectorization) methods as Principal Component
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Analysis (PCA), Independent Components Analysis (ICA), Linear
Discriminant Analysis (LDA) break the natural structure and cor-
relation in the original data, reduce redundancies and higher order
dependencies presentations in the original data set and lose poten-
tially more compact or useful representations that can be obtained
in the original tensorial forms. A serial of novel approaches to
dimensionality reduction of multidimensional data, where the
input data are represented as their natural multidimensional ten-
sors, are emerging. They can be sorted into two  classes, namely
tensor-to-tensor projection (TTP) and tensor-to-vector projection
(TVP). The typical methods in TTP include General Tensor Dis-
criminant Analysis (GTDA) [5] and Discriminant Analysis with
Tensor Representation (DATER) [6]. The criterion of DATER is to
maximize the tensor-based scatter ratio with a disadvantage of
non-convergence in an iterative solution while the criterion of
GTDA is to maximize the scatter difference with a disadvantage
of having difficulty in difference parameter selection. The typical
method in TVP is tensor rank-one discriminant analysis (TR1DA)
algorithm [7] which obtains a number of rank-one projections
with the scatter difference criterion from the repeatedly calculated
residues of the original tensor data. However, TR1DA does not take
the correlations among features into account. Lu et al. [8] proposed
Uncorrelated Multilinear Discriminant Analysis (UMDA) to extract
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uncorrelated features directly from tensor data through solving a
TVP. The UMDA-based recognition algorithm is validated to outper-
form MPCA, DATER, GTDA and TR1DA on the gait recognition task.
Multilinear extensions of linear graph-embedding algorithms were
also introduced [9,10] in a similar way as the existing multilinear
subspace learning (MSL) algorithms reviewed in this paper.

In comparison with the state-of-the-art, the contributions of this
paper are:

1) The orthogonal multilinear discriminant analysis (OMDA) algo-
rithm for orthogonal discriminant feature extraction from
tensors is introduced. As a multilinear extension of LDA, this
algorithm not only obtains discriminative features by maximiz-
ing the scatter ratio, but also enforces a constraint so that the
derived features are orthogonal. This algorithm differs from the
classical approaches which are based on vectors and can destroy
the natural structure and correlation in the original data. OMDA
can overcome the under-sampling problems.

2) Subblock orthogonal multilinear discriminant analysis (SOMDA)
proposed by us is a subblock tensor analysis version of OMDA.
SOMDA with the solution of subblocking the tensor into small
portions can extract more detailed information and reduce com-
putational complexity.

The remainder of this paper is organized as follows. Section
2 presents orthogonal multilinear discriminant analysis (OMDA)
algorithm and summarizes its computational complexity. The two
proposals of subblock orthogonal multilinear discriminant analysis
(SOMDA) are described in Section 3. Performance of OMDA and its
subblock tensor, namely SOMDA for gait recognition are presented
in Section 4. This paper ends with a conclusion in Section 5.

2. Orthogonal multilinear discriminant analysis

As the basic multilinear operation of orthogonal multilinear dis-
criminant analysis (OMDA), the algorithm of multilinear principal
component analysis (MPCA) is reviewed, and then OMDA and its
computational complexity analysis are described in detail.

2.1. Multilinear principal component analysis

MPCA is a multilinear algorithm; it performs dimensionality
reduction in all tensor modes and seeks those bases in each mode
that allow projected tensors to capture most of the variation in the
original tensors.

Let a tensor samples set {xm ∈ RI1×I2×· · ·×IN , m = 1, . . .,  M}  be a set
of M training samples in a tensor space RI1 ⊗ RI2 ⊗ · · · ⊗ RIN ,
where In(n = 1, . . .,  N) denotes the dimension of n-mode
for tensor objects. Multilinear transformation matrices
{Ũ(n) ∈ RIn×Pn , n = 1, . . .,  N} are defined in order to map  the
original tensor space RI1 ⊗ RI2 ⊗ · · · ⊗ RIN into a new tensor space
RP1 ⊗ RP2 ⊗ · · · ⊗ RPN (Pn < In, n = 1, . . .,  N):

ym = xm ×1 Ũ(1)T ×2 Ũ(2)T ×3 . . . ×N Ũ(N)T, (1)

where Pn(n = 1, . . .,  N) denotes the dimension for each mode.
ym ∈ RP1 ⊗ RP2 ⊗ · · · ⊗ RPN , m = 1, . . .,  M can capture the directions

of largest variation from the original tensor data, which is measured
by the total scatter � y

{Ũ(n), n = 1, . . .,  N} = arg max
Ũ(n),n=1,···,N

�y (2)

There is no close solution to Eq. (2) when it is optimized for
{Ũ(n), n = 1, . . .,  N} at the same time. This problem can be solved
as a problem of N projections to N subspaces; therefore it needs
an iterative solution. Projection matrices {Ũ(i), i = 1, . . .,  n − 1, n +
1, . . .,  N} are fixed when Ũ(n) is calculated. Ũ(n) is obtained by an

eigenvalue decomposition of ˚(n) and choosing the eigenvectors
corresponding to the Pn largest eigenvalues.

˚(n) =
M∑

m=1

(Xm(n) − X̄(n))Ũ˚(n) ŨT
˚(n) (Xm(n) − X̄(n))

T
, (3)

Ũ˚(n) = Ũ(n+1) ⊗ Ũ(n+2) ⊗ · · · ⊗ Ũ(N) ⊗ Ũ(1) ⊗ Ũ(2) ⊗ · · · ⊗ Ũ(n−1),

(4)

where Xm(n) denotes n-mode matrix of the m-th sample, and X̄(n)
denotes the n-mode mean matrix of these M training samples.

X̄(n) = 1
M

M∑
m=1

Xm(n). (5)

{Pn, n = 1, . . .,  N} is assumed to be known or determined by
maximizing the following criterion

{Ũ(n), Pn, n = 1, . . .,  N} = arg max
Ũ(n),n=1,···,N;P1,···,PN

�y, (6)

subject to

˘N
n=1Pn

˘N
n=1In

< ˝,  (7)

where ˝,  whose value is usually determined by users, is the
rate between the targeted dimensionality and the original ten-
sor dimensionality. We  can now consider N mappings to reduced
dimensions Pn(n = 1, . . .,  N) by specifying that the new components
must account for at least a fraction  ̋ of the total dimension ˘N

n=1In.
It also can be determined by the rate testQ(n) between the total
scatter in the n-mode after the truncation of the n-mode eigenvec-
tors exceeding the Pn-th and the total scatter without truncation.

testQ (n) =
∑Pn

in=1�(n)∗
in∑In

in=1�(n)∗
in

, (8)

where �(n)∗
in

is the in-th full-projection n-mode eigenvalue.∑In
in=1�(n)∗

in
= �x is the total scatter of original samples.

2.2. Orthogonal multilinear discriminant analysis (OMDA)

Eq. (1) compresses each tensor sample of size ˘N
n=1In into a new

tensor with the size of ˘N
n=1Pn. But the new tensor has redundancy

which needs to be reduced by the tensor vectorization and selec-
tion. There are two ways of tensor vectorization with feature vector
sorting. One is according to variance, namely selecting fewer vec-
tors according to �(n)∗

in
in descending order; the other is according

to class discriminability �p1p2...pN :

�p1p2...pN =
∑C

c=1Nc[ȳc(p1, p2, . . .,  pN) − ȳ(p1, p2, . . .,  pN)]2∑M
m=1[ym(p1, p2, . . .,  pN) − ȳcm (p1, p2, . . .,  pN)]2

,

(9)

where M and C are the numbers of samples and classes respectively.
Nc(c = 1, . . .,  C) is the number of samples from class c. ȳcm is the class
mean of the m-th sample belonging to class Cm in the projected
tensor subspace. ȳc is the mean of class c in the projected tensor
subspace. y is the mean of all tensors projected.

After all the training samples ym(m = 1, . . .,  M) are transformed
into vectors xm(m = 1, . . .,  M),  they are arranged in a new matrix
ℵ ∈ Rp×M, whose column xm corresponds to a vector sample, where
p (p = ˘N

n=1Pn) is the dimension of feature. Considering a linear
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