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a  b  s  t  r  a  c  t

Transmittance  and  Faraday  rotation  (FR)  spectra  of  one-dimensional  magnetic  heterostructures  are  inves-
tigated  using  4 by 4 transfer  matrix  method.  It  is  revealed  that  in a simple  magnetic  heterostructure  the
enhanced  FR  at  a desired  wavelength  can  be  realized  considering  a special  design  of  substructures  and
adjusting  the  thicknesses  of constituent  magnetic  layers.  In  addition,  a complex  magnetic  heterostruc-
ture  with  capability  of providing  the  multichannel  enhanced  FRs  at desired  wavelengths  is introduced.  It
is shown  that such  a heterostructure  could  support  high  transmittance  enhanced  FRs  at  telecommunica-
tion  wavelengths  of  1300  and  1550  nm,  simultaneously.  The  results  may  have  potential  applications  in
designing  the  multi-function  single  magneto-optical  devices  such  as  multichannel  Faraday  rotators  and
wavelength  division  multiplexing  systems.
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1. Introduction

Nowadays it is known that the analogous bandgaps of semi-
conductor crystals can exist when electromagnetic (EM) waves
propagate in a spatially periodic dielectric structures [1,2]. Based
on the Bragg scattering, EM waves with the frequencies within
such a gap cannot propagate inside the structure. Such dielectric
crystals have been referred to as photonic crystals (PCs) or pho-
tonic bandgap (PBG) materials. After the pioneering papers of E.
Yablonovitch and S. John in 1987 [3,4], exponential growth of the-
oretical and experimental researches on PCs has been started and
their potential applications continue to be examined. Periodic one-
dimensional PCs (1D-PCs) are composed of an ordered sequence of
two different dielectric slabs. One of the most interesting aspects
of 1D-PCs is related to the presence of a defect layer in the periodic
structure that gives rise to localization of EM wave and creates a
resonance transmittance within the gap, allowing the correspond-
ing EM wave with previously forbidden wavelength to propagate
inside the structure [4–6].

It has been revealed that the localization of EM waves appears
not only in the disordered structures, but also in quasiperiodic
systems such as Fibonacci [7] and Thue–Morse [8,9] multilay-
ers. Moreover, kind of particularly attractive disordered structures
are heterostructures, formed by combining two or more periodic
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1D-PCs with different layer thicknesses or different constituent
materials. Since distinct PCs have different optical properties,
heterostructures can show many appealing characteristics. For
example, extension of the PBG, criterion of omnidirectional reflec-
tions, and designing of polarization bandpass filters have been
studied in number of literatures [10–13].

On the other hand, in past several years, considerable attention
has been paid to magnetophotonic crystals (MPCs) due to their
capability of providing unique magneto-optical (MO) properties,
such as their drastically enhanced Faraday rotations (FRs) [14–17].
The MPCs are formed when the constitutive materials of the PCs
are magnetic, or even only a defect layer in the PC is magnetic
[16]. The structures with high MO responses are interesting to use
in many MO-devices, such as MO  isolators, MO  modulators, MO
sensors, and MO circulators. Recently, utilizing multicavity MPCs
to create multiple passbands inside the PBG has opened a new
window to engineer multi-function single MO-devices that show
simultaneously high transmittance and enhanced FRs [18–20].

In this paper, we  discuss magnetic heterostructures constituted
of dielectric and magnetic multilayers. The MO responses of simple
and complex heterostructures are studied through 4 by 4 trans-
fer matrix method. We show that the enhanced FRs at desired
resonance wavelengths in a wide PBG could be obtained consider-
ing special design of heterostructures. Such a capability may have
potential applications in multi-function single MO-devices.

The outline of our study is as follows: Section 2 gives a brief
description of 4 by 4 transfer matrix method. In Section 3 we have
presented our study in two  steps. First, for a simple heterostructure
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consisting of two periodic MPCs with different design wavelengths,
it is shown that the resonance transmittance would occur at spe-
cial wavelengths. Second, for a complex magnetic heterostructure
constituted of two magnetic microcavity substructures the trans-
mittance and FR spectra are studied. Finally, we summarize the
obtained results in Section 4.

2. 4 by 4 transfer matrix formalism

Consider the EM wave propagation through a periodic MPC
structure P = {A,B}m, where A and B are dielectric and magnetic lay-
ers with thicknesses of dA and dB. m denotes the repetition number
and the whole structure is surrounded by air. To calculate optical
and MO  responses of magnetic multilayer structures, we use 4 by
4 transfer matrix method and follow the formalism that has been
developed by Š. Višňovský  [21]. In a medium uniformly magne-
tized in z-axis, the dielectric permittivity of magnetic layer ε̂B has
the following form:

ε̂B =

⎛
⎜⎝

εxx εxy 0

−εxy εxx 0

0 0 εzz

⎞
⎟⎠ , (1)

where the nondiagonal term εxy corresponds to the magnetic gyra-
tion. In linear regime, εxy is proportional to the magnetization of
the medium and can be tuned by external magnetic field �Hext. The
dielectric layer is determined by a diagonal tensor ε̂A as:

ε̂A =

⎛
⎜⎝

εA 0 0

0 εA 0

0 0 εA

⎞
⎟⎠ . (2)

For a J-layered MPC  structure the total transfer matrix for nonin-
teracting right- and left-circularly polarized (RCP and LCP) waves,

M =
[
D(0)

]−1
J∏

j=1

S(j)D(j+1), (3)

relates the EM field amplitudes of incident and transmitted waves
through the characteristic (S) and dynamic (D) matrices. For the
case of normal incidence and polarization parallel to multilayer
surfaces, the block diagonal S and D matrices are given by:

D(j) =

⎡
⎢⎢⎢⎣

1 1 0 0

N(j)
+ −N(j)

+ 0 0

0 0 1 1

0 0 N(j)
− −N(j)

−

⎤
⎥⎥⎥⎦ , (4)

S(j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos ˇ(j)
+

i

N(j)
+

sin ˇ(j)
+ 0 0

iN(j)
+ sin ˇ(j)

+ cos ˇ(j)
+ 0 0

0 0 cos ˇ(j)
−

i

N(j)
−

sin ˇ(j)
−

0 0 iN(j)
− sin ˇ(j)

− cos ˇ(j)
−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Here N(j)
± =

√
ε(j)

xx ± iε(j)
xy represent the complex refractive indices

for RCP and LCP waves in the jth layer. ˇ(j)
± = (2�/�)N(j)

± d(j) with
d(j) being the thickness of the jth layer and � is the wavelength of
incident wave in the vacuum. For a dielectric layer N(j)

+ = N(j)
− and

the characteristic and dynamic matrices consist of identical 2 by 2

blocks. In terms of M-matrix components, the complex transmis-
sion coefficients of RCP and LCP waves can be obtained by

t+ = 1
M11

, t− = 1
M33

. (6)

Finally, the observable transmittance T(�) and Faraday rotation
�F(�) of the MPC  can be expressed as follows:

T(�) = 1
2

(|t+|2 + |t−|2), (7)

�F (�) = −1
2

(ϕ+ − ϕ−), with ϕ± = arg (t±) . (8)

Note that for normal incidence which the characteristic and
dynamic matrices are block diagonal, the total transfer matrix will
be block diagonal too. On the other hand, the up-left and down-
right 2 by 2 blocks of M-matrix are related to RCP and LCP waves,
respectively. Such a feature gives the liberty to calculate the t± using
corresponding total transfer matrices with dimensions reduced to
2 by 2.

2.1. A simple magnetic heterostructure

In order to study the MO properties of magnetic heterostruc-
tures, firstly, we introduce a simple heterostructure with two
substructures. Defining the left substructure as PL = {A1, B1}m1 with
the thicknesses of dA1

and dB1 and the right substructure as PR =
{B2, A2}m2 with the thicknesses of dA2

and dB2 , we  construct a sim-
ple heterostructure SH as:

SH = PL ∪ PR = {A1, B1}m1 {B2, A2}m2

= {A1, B1, ..., A1, B1︸ ︷︷  ︸
m1pair of A1,B1

|B2, A2, ..., B2, A2︸  ︷︷  ︸
m2 pair of B2,A2

}. (9)

The SH has 2(m1 + m2) layers and is surrounded by air. The left
and right substructures consist of identical dielectric (A) and mag-
netic materials (B), but with different thicknesses. We  utilize SiO2
and cerium substituted yttrium iron garnet (Ce:YIG) as the dielec-
tric and magnetic layers. Ce:YIG is used because it turns out to be
one of the most attractive materials for practical applications due to
low absorption in infrared region and large MO response. Also, SiO2
is chosen to get a transparent structure with high optical contrast
ratio. The dielectric permittivity of SiO2 is εA = 2.19 and the mag-
netic Ce:YIG layer has dielectric tensor elements εxx = 4.884 and
εyy = 0.009i at telecommunication wavelength � = 1550 nm [14].
The specific FR of a single layer Ce:YIG can be calculated by �F =
(�/�)�n ∼= −0.47 [deg/�m] at � = 1550 nm [22]. Here �n is the
difference of the refractive indices of RCP and LCP waves in the
magnetic layer.

According to Eq. (3), the total transfer matrix of heterostructure
SH can be represented by:

M1 = {[D(0)]
−1

S(A1)S(B1)...S(A1)S(B1)D(2m1+1)|[D(2m1+1)]−1︸  ︷︷  ︸S(B2)S(A1)

...S(B2)S(A1)[D(2(m1+m2)+1)]−1}. (10)

Looking at the center of M1, we  can easily locate the unit matrix
I at the interface of the left and right substructures as:

D(2m1+1)[D(2m1+1)]−1 = I. (11)
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