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The  linear  and third-order  nonlinear  optical  absorptions  in semiparabolic  quantum  wells  are  studied
in detail.  Analytic  formulas  for the  linear  and  third-order  nonlinear  optical  absorption  coefficients  are
obtained  using  the compact  density  matrix  approach.  Based  on  this  model,  numerical  results  are pre-
sented  for  typical  GaAs/AlGaAs  semiparabolic  quantum  wells.  The  results  show  that  the  factors  of  the
incident  optical  intensity  and  the  semiparabolic  confinement  frequency  have  great  influences  on the
total  optical  absorption  coefficients.
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1. Introduction

In the past few years, the nonlinear optical properties of semi-
conductor quantum well and quantum dot nanostructures, in
particular the second- and third-order optical nonlinearities have
attracted much attention in the theoretical and applied physics
sides [1–7], because of their novel physical properties and promise
for potential applications. Furthermore, quantum confinement of
carriers in these low-dimensional semiconductor nanostrucures
lead to the formation of discrete energy levels and the dras-
tic change of optical absorption spectra [8]. One of the most
remarkable properties of these low-dimensional electronic sys-
tems is that the optical transitions between the size-quantized
subbands are feasible. Recently, the linear intersubband optical
absorption within the conduction band of a GaAs quantum well
has been studied experimentally without an electric field [9],
and with an electric field [10]. The fact that a very large dipole
strength and a narrow band width were observed suggests that
the intersubband optical transitions in a quantum well may  have
very large optical nonlinearities. Nonlinear intersubband opti-
cal absorption in a semiconductor quantum well was calculated
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by Ahn et al. [11]. Intersubband optical absorption in coupled
quantum wells under an applied electric field was  studied by
Yuh and Wang [12]. In 1993,Cui et al. [13] studied absorption
saturation of intersubband optical transitions in GaAs/AlxGa1-xAs
multiple quantum wells in experiment, and they tested the sat-
uration optical intensity for Is = 0.67 MW/cm2. In 2003, refractive
index changes induced by the incident optical intensity in semi-
parabolic quantum wells were investigated by the present author
[14]. In 2010,Zhang et al. [15] studied nonlinear optical absorp-
tion coefficients and refractive index changes in a two-dimensional
system. Optical absorption and refractive index changes in a two-
dimensional quantum ring with an applied magnetic field were
investigated by Xie [16]. From fundamental and practical points of
view, These linear and nonlinear size-quantized transitions have
the potential for device applications in far-infrared laser ampli-
fiers, photodetectors, and high-speed electrooptical modulators
[17,18].

In this paper, the linear and third-order nonlinear inter-
subband optical absorptions in semiparabolic quantum wells
are studied in detail. In Section 2, analytical formulas for
the linear, third-order nonlinear and total optical absorption
coefficients are derived by using the compact-density-matrix
method and an iterative procedure. Numerical results and
discussion are presented in Section 3. We  find that the
incident optical intensity and the semiparabolic confinement
frequency have great influence on the total optical absorption
coefficients.
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2. Theory

The effective-mass Hamiltonian for an electron in a semi-
parabolic quantum well can be written as

H = − �
2

2m∗

[
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

]
+ V(z) (1)

where z represents the growth direction, �  is Planck’s constant, and
m* is the conduction-band effective mass, which will be taken to
be constant in the rest of the paper. V(z) is the confining potential,
namely

V(z) =

⎧⎨
⎩

1
2
m∗ω2

0z
2, z > 0

∞, z < 0
(2)

where ω0 is the semiparabolic confinement frequency (see Fig. 1).
The eigenfunctions  n,k(r) and eigenenergies εn,k are solutions

of the Schrödinger equation H n,k(r) = εn,k n,k(r) and are given by

 n,k(r) = A−1/2ϕn(z)Uc(r)eik‖.r‖, (3)

and

εn,k = En + �
2

2m∗ |k‖|2, (4)

where A is the area of the well, k|| and r|| are the wave vector
and coordinates in the xy plane, and Uc(r) is the periodic part
of the Bloch function in the conduction band at k = 0. ϕn and En

are the envelope wave function and the transverse energy of the
nth subband, solutions of one-dimensional Schrödinger equation
H0ϕn(z) = Enϕn(z), where H0 is the z part of the Hamiltonian H in
Eq. (1), i.e.,  H0 = −(�2/2 m*)(d2/dz2) + V(z), which eigenfunction and
eigenenergy are given by

En =
(

2n + 3
2

)
�ω0 (n = 0, 1, 2, . . .,  ) (5)

ϕn(z) = Nn exp
[
− 1

2˛
2z2

]
H2n+1(˛z), (z > 0),  (6)

where  ̨ =
√
m∗ω0/�, Nn =

[
˛−1√

�22n (2n + 1)!
]− 1

2 is the nor-
malization constant, and H2n+1(˛z) are the Hermite polynomials.

Therefore the dipolar transitional matrix element can be written
as [1]
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Fig. 1. Schematic diagrams for energy levels and wave functions of a semiparabolic
quantum well.

where ı is the Kronecker delta function, and q is the electronic
charge.

Next we will derive the expression of the linear and third-order
nonlinear optical absorption coefficients in the model. Let us con-
sider an electromagnetic field with frequency ω, which is incident
with a polarization vector normal to the quantum well. The system
is excited by an electromagnetic field

E(t) = E0 cos(ωt)

= Ẽeiωt + Ẽe−iωt .
(8)

Let the sign � denote the one-electron density matrix for this
regime. Then the evolution of the density matrix � obeys the fol-
lowing time-dependent Schrödinger equation

∂�ij
∂t

= (i�)−1[H0 − qzE(t), �]ij − �ij(� − �(0))ij, (9)

where �(0) is the unperturbed density matrix, and � ij is the relax-
ation rate. For simplicity, we will assume in the following only two
different � ij values: � 1 = 1/T1 for i = j is the diagonal relaxation rate,
and � 2 = 1/T2 for i /= j is the off-diagonal relaxation rate. T1 is a
population relaxation time, which can be enhanced by storing the
excited electrons on a metastable level. T2 is certainly governed
by intrinsic mechanisms such as electron–electron interaction or
optical-phonon emission for an excitation energy. Eq. (9) is solved
by using the usual iterative method [1], then

�(t) =
∑
n

�(n)(t), (10)

with

∂�(n+1)
ij

∂t
= 1
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{
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}

− 1
i�

[qz, �(n)]ijE(t). (11)

The electronic polarization can be expanded as

P(t) = ε0	
(1)Ẽeiωt + ε0	

(2)
2ωẼ

2e2iωt + ε0	
(2)
0 Ẽ

2 + ε0	
(3)Ẽ3eiωt

+ ε0	
(3)
3ωẼ

3e3iωt + · · · + c.c. (12)

The dc optical rectification term ε0x
(2)
0 Ẽ

2 will be neglected due

to the small size of 	(2)
0 . Contributions due to higher order har-

monic terms in ω will also be neglected. These assumptions yield
the approximate form for P(t) as

P(t) ≈ ε0	
(1)Ẽeiωt + ε0	

(3)Ẽ3eiωt + c.c.. (13)

For simplicity, we  shall confine our attention to two-level sys-
tems only for electronic transitions. Hereafter, the ground state will
be denoted by g, the first excited state by e, respectively.

The analytical forms of the linear 	(1) and the nonlinear 	(3)

susceptibilities are given as follows by the same procedure as Ref.
[6]. First, for the linear term

ε0	
(1)(ω) = N|Meg |2

�ωeg − �ω − i��ge
. (14)

For the third-order term
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