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a  b  s  t  r  a  c  t

The  spectral  characteristics  of  a pulsed  hollow  Gaussian  beam  passing  through  a  circular  aperture  are
studied.  Based  on the  vectorial  Rayleigh  diffraction  integrals,  the  analytical  expressions  of  the  spectra
for the  complex  analytic  signal  representation  and  for the  complex  amplitude  envelope  representation
are  derived,  respectively,  and  the  comparison  between  them  is  made.  The  influences  of  the  truncation
parameter  and  the  beam  order  on the  spectral  shifts  and  on  the  spectral  switches  are  illustrated.  It
is shown  that  the  spectrum  for the  complex  analytic  signal  representation  and  that  for  the  complex
amplitude  envelope  representation  are  obvious  different  as  the  pulse  shorter  than  an  optical  period.
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1. Introduction

In 1999 Pu and his collaborators discovered the phenomenon
of spectral switch, which is the spectral shift that shows a sudden
change from red shift (or blue shift) to blue shift (or red shift) [1].
It has been verified experimentally by Kandpal et al. [2,3]. Foley
and Wolf pointed out that it should be regarded as a manifestation
of diffraction-induced spectral changes [4]. Recently, the anoma-
lous spectral behavior of pulsed beam diffracted at an aperture has
attracted considerable attentions [5–12]. Most of the previous work
have been focused on the pulsed Gaussian beam. Since 2003, Cai
et al. [13] introduced a convenient theoretical model named hollow
Gaussian beam (HGB) to describe dark-hollow beams, the propa-
gation of HGBs have been investigated extensively [14–18]. Xu and
Lü [19] have investigated the spatiotemporal behaviour of isod-
iffracting hollow Gaussian pulsed beams propagating in free space.
The spectral anomalies of focused spatially fully coherent polychro-
matic hollow Gaussian beam at the geometrical focal plane have
been studied [20]. Based on the vectorial Rayleigh–Sommerfeld
formulae, the propagation properties of the vector hollow Gauss-
ian beam through a circular aperture are studied and the integral
expressions of it are derived [21]. To our knowledge, the spec-
tral characteristic of an ultrashort pulsed hollow Gaussian beam
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passing through a circular aperture has not been studied. Usu-
ally, both the complex amplitude envelope (CAE) representation
and the complex analytic signal (CAS) representation can be used
to describe the pulsed beams. However, for an ultrashort pulsed
beam, the CAS representation should be adopted to describe the
propagation of the beam. The spectra for the CAE and the CAS rep-
resentation of ultrashort pulsed beam are different. In this paper,
we will theoretically investigate this problem in details. The paper
is organized as follows. In Section 2, based on vectorial Rayleigh
diffraction integral, we  will derive the analytical expressions of the
spectral intensity for the CAE and the CAS representations. Based
on analytical expressions, the numerical calculations and discuss-
ions are presented in Section 3. Finally, a conclusion is made in
Section 4.

2. The analytical expression of the spectral intensity

We consider the case in which E(x,y,z,t) is known at the plane
z = 0 and propagates in the region z > 0. For a pulsed hollow Gaussian
beam having its beam waist at the input plane z = 0, E0(x0,y0,0,t)  can
be written as:

E0(x0, y0, 0, t) = E0x(x0, y0, 0, t)î + E0y(x0, y0, 0, t)ĵ, (1)

with

E0x(x0, y0, 0, t) =
(
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E0y(x0, y0, 0, t) = 0. (3)

where, n is the beam order of HGB, w0 is related to the spot size
and is assumed to be frequency independent, î  and ĵ denote unit
vectors in the x0 and y0 directions, respectively. A(t) governs the
pulse shape. The spectrum U0(x0, y0, 0, ω) with a frequency ω of
the pulse can be obtained by Fourier transform:

U0(x0, y0, 0, t) = 1
2
√

�

∞∫
−∞

E0(x0, y0, 0, t)exp(−iωt)dt (4)

and can be expressed as:

U0(x0, y0, 0, ω) = U0x(x0, y0, 0, ω)î + U0y(x0, y0, 0, ω)ĵ, (5)

where,
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U0y(x0, y0, 0, ω) = 0, (7)

here, f(ω) is the Fourier transform of the A(t).
A circular aperture with the radius a is assumed to be located at

the incident plane z = 0. According to the vectorial Rayleigh diffrac-
tion integral, the field at the z plane behind the circular aperture
can be obtained:

Ux(r, ω) = − 1
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where, r0 = x0 î + y0 ĵ, r = xî + yĵ + zk̂, k̂ is the unit vector in the z
direction,

T(x0, y0) =
{
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(11)

denotes the window function of a circular aperture located at plane
z = 0, and

G(r, r0) = exp(ik |r − r0|)
|r − r0| , (12)

is the Green function. For following calculation, the Green function
can be approximated as follows:

G(r, r0) ≈ 1
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where, k = ω/c is the wave number, and c is the velocity of light in

vacuum, r = (x2 + y2 + z2)
1/2

. By using Eqs. (11) and (13) in Eqs.
(8)–(10) and performing the integration, we obtain the result:
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where, � (·) is the incomplete gamma  function, � = (x2 + y2)
1/2

and

 ̌ = i
ω

2cr
− 1

w2
0

. (17)

If adapted the CAS representation and the CAE representation,
respectively, f(ω) take different form for the same pulse. In order
to know the differences between the spectrum for the CAS repre-
sentation and that for the CAE representation, we  take Gaussian
pulse as an example. For the CAE representation, the A(t) takes the
following form:

A(t) = exp

(
−a2

gt2

T2

)
exp(iωct), (18)

where, ag = 2(ln2)1/2, ωc is carry frequency, T is the pulse duration.
m = T/Tc is the number of optical cycle for the pulse, where Tc is
the time period corresponding to the carry frequency. Taking the
Fourier transform of A(t), we  obtained:
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For the CAS representation, the form of f(ω) can be expressed as
follows:
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The spectral intensity of the diffraction field can be obtained
from Eqs. (14)–(16):

I(x, y, z, ω) =
∣∣Ux(x, y, z, ω)

∣∣2 +
∣∣Uy(x, y, z, ω)

∣∣2 +
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∣∣2
.

(21)

Eq. (21) is main result of this work, which provides a general
approximate expression for the spectral intensity of a nonparax-
ial vectorial hollow Gaussian pulsed beam diffracted at a circular
aperture. The effects of vectorial and nonparaxial nature on spectral
anomalies of pulsed Gaussian beam passing through a hard-edged
aperture have been analyzed in details [11]. We  will not discuss the
effects of vectorial and nonparaxial nature in this paper any more.
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