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a  b  s  t  r  a  c  t

The  visibility  of  ghost-interference  patterns  is investigated  firstly  based  on the  coherent-mode  rep-
resentation  theory.  We  find  that  the  intensity  correlation  function  can  be  changed  from  the  usually
two-dimensional  integral  representation  to a  new  one-dimensional  summation  representation.  During
the process  of analyzing  the  effects  from  the  light  source’s  properties  and  the  transmission  area  of  the
object  imaged  on the imaging  visibility,  it is  shown  that  by compared  with  the  results  from  the  integral
representation,  the  coherent  mode  representation  is  quite  useful  to  understand  more  clearly  the  whole
process of correlated  imaging.
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1. Introduction

Correlated imaging has attracted much attention in recent years.
To retrieve the information about an unknown object, the tech-
nique takes advantage of the quantum correlation between a pair
of photons generated by parametric down conversion (PDC) [1–6].
In a correlated imaging system, the photons of a pair are spatially
separated and travel through two different imaging systems, the
spatial information of the object inserted into one of the imaging
systems can be non-locally recovered by analyzing the conditional
detection probability of a photodetector placed in the other imag-
ing system. Notice that the first two-photon imaging experiment
was performed with entangled photons [2]. While a great deal of
attention has been put on the possibility of performing correlated
imaging with classically thermal source now [7–16]. However, the
visibility of classical correlated imaging is limited owing to the
presence of an intrinsic background term in the second-order cor-
relation function. To overcome the obstacles, some effects turn to
correlated imaging with high-order intensity correlation [17–22].
In addition, a computational ghost-imaging [23] which can be used
to optical encryption [24] was reported.
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Very recently, the coherent-mode representation of partially
coherent field which is quite different from the usually two-
dimensional integral representation, has been proposed to analyze
correlated imaging, the results showed that this method is par-
ticularly suitable for evaluating the imaging quality [25]. In this
paper, motivated by this work, we  firstly use the coherent-mode
representation theory to investigate the imaging visibility in cor-
related imaging with partially coherent field. It is shown that the
visibility of ghost-interference patterns can be analyzed by the dis-
tribution of the eigenvalue of the coherent-mode representation of
the source and the distribution of the decomposition coefficient of
the object imaged. Based on the results, we can understand more
clearly the effects from light’s properties and the object transmis-
sive area.

2. Model and equations

A typical system for correlated imaging is shown in Fig. 1. The
source is divided into two beams by a beam splitter, they travel on
their respective paths to be detected at spatially separated detec-
tion systems. In reference arm there is not usually any object, the
beam simply propagates to the detector D2, the reference detector
spatially resolves the light fluctuations, as for example an array
of pixel detectors. In test arm, the beam usually propagates to
the object imaged, and then, after propagation, it travels to the
detector D1 which is a pointlike detector, in any case D1 gives no
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Fig. 1. A simplified scheme for correlated imaging.

information on the object spatial distribution. The two  arm systems
are characterized by their response functions h2(x2, u2) and h1(x1,
u1), respectively.

In the thermal case, we can retrieve the information of the object
imaged by measuring the spatial correlation function of the inten-
sities detected by D1 and D2, which may  be recorded with the
coincidence rate [26–28].

G(2)(u1, u2) = 〈E(u1)E(u2)E∗(u2)E∗(u1)〉
= 〈I1(u1)〉〈I2(u2)〉 + G(u1, u2),

(1)

where 〈Ii(ui)〉 (i = 1, 2) is the intensity distribution at the ith detec-
tor, G(u1, u2) is the correlation function of intensity fluctuations
depending on both paths, and the first term 〈I1〉〈I2〉 which only
contributes a background cannot be used to implement correlated
imaging. So all the object information is contained in the second
term, i.e., the intensity fluctuation correlation. Here we  have [9]
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where �(x1, x2) is the second-order correlation function of the
source, and �Ii(ui) = Ii(ui) − 〈Ii(ui)〉.

Following along the lines of Ref. [25], let us consider the second-
order coherence theory of optical fields [29], and substitute the
second-order correlation function of the source which is expressed
in the coherent-mode representation into Eq. (1). The intensity cor-
relation function given in Eq. (1) can be rewritten as
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. (3)

The significant point about Eq. (3) is that both the background
term and the intensity fluctuation correlation term are changed
from the usually two-dimensional integral representation to a new
one-dimensional summation representation. Note that the first
term of Eq. (1) is ignored in Ref. [25], so only imaging quality was
discussed. Here we consider this term, and change it into the one-
dimensional summation representation, so we can investigate the
imaging visibility based on Eq. (3).

Here we consider a partially coherent Gaussian-Schell model
(GSM) source, the second-order correlation function in the GSM
source plane has [29]
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[
−x2

1 + x2
2

4�2
l

− (x1 − x2)2

2�2
g

]
,

where G0 is a normalized constant, � l is the source’s transverse
size, and �g is the transverse coherence width of the source. To
apply the coherent-mode theory to correlated imaging, we should
firstly give the coherent-mode representation of the GSM source,
which has been shown in Ref. [29]. The corresponding eigenvalue
and eigenfunction have
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where a = 1/4�2
l

, b = 1/2�2
g , and c =

√
a2 + 2ab. Hn(x) are the

Hermite polynomials. Here we choose a simple 2-f  imaging sys-
tem [8] to discuss our results. By substituting the corresponding
impulse response functions into the coherent mode representation
[25], the conditional intensity correlation can be expressed as
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where �n(q) are the Fourier transform of �n(x), and fn(0) can be
looked upon as the decomposition coefficients of the object [25]. It
should be noted that the first term of Eq. (5) does not exist in the
results given in Ref. [25].

3. The numerical results

From the conclusions in Ref. [25], the imaging quality cru-
cially depends on the distribution of the eigenvalues ˇn of the
coherent-mode presentation of the source and the decomposi-
tion coefficients fn(0) of the object imaged. In the following, we
will attempt to apply this method to analyzing the changes of the
imaging visibility. Firstly let us investigate the effects of the light
source’s transverse size and coherence width, which were the-
oretically discussed under the usual integral representation [26]
and then experimentally implemented [30]. During the process, a
double-slit with the slit width 0.07 mm and the distance between
two slits 0.16 mm is chosen as the object imaged. From Eq. (5),
we can easily obtain the normalized intensity correlation function
G(2)(u1 = 0, u2). Fig. 2 shows the distribution of the eigenvalues ˇn

of the coherent-mode representation of the source and the decom-
position coefficients fn(0) of the object, the corresponding intensity
correlation function which is normalized by its maximum value is
also presented. Here we  choose the parameters as �l =

√
1/4a =

3.5 mm,  �g =
√

1/2b = 88.4 �m,  and n = 50. It is interesting to note
that fn(0) has a relative narrow distribution when comparing with
the distribution of ˇn, and the visibility of the ghost-interference
pattern is quite small.

Now, the most obvious question is whether the changes of the
visibility can be understood by the varieties of the distribution of ˇn

and fn(0). To this end, we  set � l = 1 mm,  but keep other parameters
unchanged in Fig. 3. It is shown that by comparing Fig. 3(c) with
Fig. 2(c), a decrease of the source’s transverse size will lead to an
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