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a  b  s  t  r  a  c  t

Classification  of liver  masses  is  important  to early  diagnosis  of  patients.  In  this  paper,  a diagnostic  system
of  liver  disease  classification  based  on contrast  enhanced  ultrasound  (CEUS)  imaging  is proposed.  In
the  proposed  system,  the  dynamic  CEUS  videos  of  hepatic  perfusion  are  firstly  retrieved.  Secondly,  time
intensity  curves  (TICs)  are  extracted  from  the  dynamic  CEUS  videos  using  sparse  non-negative  matrix
factorizations.  Finally,  deep  learning  is  employed  to classify  benign  and  malignant  focal  liver  lesions
based  on  these  TICs.  Quantitative  comparisons  demonstrate  that  the  proposed  method  outperforms  the
compared  classification  methods  in  accuracy,  sensitivity  and  specificity.

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Primary liver cancer is the sixth most common cancer world-
wide, and the third most common cause of death from cancer [1].
In order to increase the chances for survival by providing optimal
treatments, early detection and accurate diagnosis of liver can-
cer is of utmost importance [2,3]. Biopsy is currently the golden
standard for diagnosing cancer, but it is invasive, uncomfortable,
and is not always a viable option depending on the location of the
tumor [4–6]. Noninvasive diagnosis of focal liver lesions (FLLs) can
be evaluated by using CEUS to determine the liver vascularization
patterns in real-time, and thus, improve the diagnostic accuracy for
the classification of FLLs [7].

Recently, many studies have investigated CEUS patterns of FLLs,
establishing their typical behaviour in the arterial, portal and
venous phases [8,9]. The normal liver is a highly vascular organ pre-
dominantly supplied by both hepatic artery (25%) and portal vein
(75%) [10]. However, malignant focal liver lesions (i.e., hepatocellu-
lar carcinomas (HCCs), hypervascularity metastases) are supplied
by the hepatic artery as well as tumor vessels. Therefore, the
enhancement patterns of FLLs in the arterial and portal venous
phases of CEUS can be used for characterizing FLLs [11]. Com-
pared with healthy parenchyma, benign liver lesions are typically
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hyper-enhanced at all time, whereas malignant lesions usually
present a hyper-enhanced pattern during the arterial phase and
become hypoenhanced in the later portal-venous phase [12].

Time intensity curves (TICs) are a graphical illustrating rep-
resentative contrast uptake kinetics represented in a CEUS
investigation. Comparative TIC analysis between a tumoral region
of interest (ROI) and parenchymal equivalent ROI could enhance the
diagnostic accuracy of CEUS, thus establishing its role in liver cancer
diagnosis [13,14]. Previous reports have shown that the analysis of
TICs such as the area under the curve (AUC) and time to peak (TTP)
have statistical significance between benign and malignant lesions
of various types of tumors in the hemodynamic measurements
[15–18].

Based on the TICs of CEUS, diagnostic systems had been devel-
oped to assist ultrasonographist in liver cancer processing to
further improve the diagnostic accuracy. Casey et al. [18] extracted
the TIC of each pixel within a ROI and used the measured TICs’
parameters as the features to classify the benign and malignant
tumors of rats by linear discriminant analysis. The problem of the
method lies in that the extraction of TICs is susceptible to noise
because the CEUS imaging signal is noisy due to many factors (i.e.,
speckle noise, fluctuations in the concentration of microbubbles)
[18]. Streba et al. [19] extracted the TIC with the mean of the signal
intensity within a manual drawing ROI surrounding the tumor and
also used the measured TICs’ parameters (i.e., AUC, TTP) as the fea-
tures to classify liver tumors by artificial neural networks (ANN).
The TICs obtained from ROI measurements may be composites of
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activities from different overlapping components in the selected
ROI. It is the major disadvantage of ROI measurements method.
Junji et al. [11] estimated TICs for an FLL by use of a series of the tem-
porally averaged microflow imaging (MFI) images and employed a
cascade of six independent ANN by use of extracted temporal and
image features for classifying liver diseases.

The limitations of the above-mentioned methods were that the
feature selection was determined empirically and always operator-
dependent. Furthermore, the parameters setting are based on the
experimental knowledge. To address the problem, we  introduce
deep learning [20] into the diagnostic system to classify the benign
and malignant focal liver lesions. Deep learning is employed in this
work because it is received much attention recently. It combines
the feature extraction and recognition together perfectly. The fea-
ture extraction is implemented from low level to high level through
unsupervised feature learning instead of being hand-designed [21].
Deep learning simulates the human brain to recognize objects
through different layers’ features.

Moreover, to overcome the subjectivity of TICs extracted with
manual ROI selection and the impact of speckle noise, an automat-
ical TICs extraction method is used. The TICs are extracted from
the dynamic CEUS image sequences by Factor Analysis of Dynamic
Structures (FADS) techniques. As far as we know, this is the first
report combining TICs extracted automatically with deep learning
to develop a diagnostic system.

The rest of this paper is organized as follows: the related works
are introduced in Section 2. Section 3 describes the data acquisi-
tion and pre-processing, sparse non-negative matrix factorizations,
the deep learning classifier and the framework of the classification
system. In Section 4, we present the classification results and dis-
cuss the results obtained in the experiment. Finally, we give the
conclusion in Section 5.

2. Related works

The TICs extracted from dynamic CEUS image sequences can be
used to detect the aberrant functionality of tumor vasculature. Fac-
tor Analysis of Dynamic Structures (FADS) [22,23] is a technique
used for the extraction of TICs from a series of dynamic images.
The technique allows homogenous physiological structures with
different temporal characteristics to be identified. Recently, FADS
has been investigated in hepatic perfusion studies based on CEUS
imaging [24–27]. However, one of the major drawbacks of FADS
is that the solution is not mathematically unique when only non-
negativity constraints are used. In order to guarantee the solution
corresponding to the physiological truth uniquely, we use a sparse
non-negative matrix factorizations as presented in our previous
work [27] to extract the TICs.

Due to the dual blood supply from the hepatic artery and por-
tal vein, the balance between arterial and portal blood supply is
an indication of the type of lesion [26]. From a hemodynamic per-
spective, benign and malignant lesions in the liver differ in their
respective needs in arterial blood supply [12,28]. Furthermore,
most FLLs show unique enhancement patterns in the first two
phases [18,29]. Therefore, in the study, we extracted the TICs of
arterial and portal vein phases.

3. Materials and methods

3.1. Data acquisition and pre-processing

Ultrasound examinations were performed by an experienced
ultrasonographist using a Philips iU22 equipped with a C5-1 trans-
ducer (Philips Medical Systems, Bothel, WA)  and contrast specific
imaging (CSI). Initially, a B-mode scan was performed to identify

the best approach to the lesion. Thereafter, a bolus of 1.5–2.4 ml  of
Sonovue (Bracco, Milan, Italy) was injected intravenously through a
cubital vein, followed by flush of NaCl 0.9% 5 ml  in bolus. Real-time
side by side contrast-enhanced mode continuous video clip with a
mechanical index of less than 0.20 were acquired at a frame rate of
8-15 fps.

The study population comprised 22 patients with 26 lesions who
underwent CEUS in Huazhong University of Science and Technol-
ogy affiliated Wuhan Union Hospital between March 2012 and May
2013. Positive diagnosis was  reached through a combination of
other imagistic methods (CT and CE-MRI), liver biopsy in uncer-
tain cases or followup for a minimum period of sixth months.
All the cases consisted of 6 hepatocellular carcinomas (HCCs), 10
cavernous hemangiomas (CHs), 4 liver abscesses, 3 metastases
(METASs), and 3 localized fat sparings (LFSs). The patients’ ages
ranged from 18 to 73 years (mean, 43.5 ± 9.9 years), 12 case of
male and 10 case of female. The average size of the tumor was
21.2 ± 13.8 mm (size range, 10.0–56.3 mm)  for benign lesions and
23.0 ± 10.3 mm (size range, 9.0–32.2 mm)  for malignant tumors.

To minimize the impact of breathing motion on TICs extraction
and improve the accuracy of the classification system, an image
correction technique as presented in our previous work [30] that
combining of template matching and frame selection was applied
to compensate respiratory motion throughout each CEUS video.
Respiratory motion compensation for the free-breathing data is an
obligatory pre-processing step before the TICs extraction.

3.2. Sparse non-negative matrix factorizations

To extract the TICs from the dynamic CEUS image sequences,
we introduce a sparse non-negative matrix factorizations (SNMF)
[27,31] which uses the sparseness of each pixel in all coefficient
images as a degree of the amount of mixing. The sparseness degree
function is the �1-norm of each pixel. The objective function is
defined by:
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where the size of matrix A is N × M,  N is the number of pixels in
the image and M is the number of dynamic images. Matrix C and
matrix F are the coefficients image and the TICs which defined in
FADS model. Ci is the ith row vector of C.

In order to correct for the nonuniqueness of the solution in opti-
mization problem (1), we  use the Frobenius norm of F to constraint
it. The final objective function becomes:
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where  ̌ > 0 is a parameter to suppress �  F �
2
F , and  ̨ > 0 is a regular-

ization parameter to balance the trade-off between the accuracy of
approximation and sparseness of C.

The objective function is solved by the alternating non-
negativity-constrained least squares (ANLS) algorithm referred in
[31]. The sparse NMF  (SNMF) algorithm begins with the initializa-
tion of F with non-negative values. Then, it iterates the following
ANLS until it is convergence:
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where eK×1 ∈ RK×1 is a column vector with all components equal
to one, 0K×1 ∈ R

K×1 is a zero vector, and
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