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a  b  s  t  r  a  c  t

In this work,  we  study  the  evolution  of a Gaussian  beam  inside  a one-dimensional  inverted  nonlinear
photonic  crystals  (INPC)  with a Kerr nonlinearity.  The  INPC  is  a  kind  of  virtual  crystals  which  is  gener-
ated  by  the optical  induction  via  the  electromagnetically  induced  transparency  (EIT).  The  propagation
dynamics  of  the  Gaussian  with  different  total  power  are  identified.  Four  types  of propagation  behavior
are  found.  They  are  collapse  beam,  breather  beam,  soliton  and  symmetry-breaking  beam,  respectively.
The  border  between  these  four  behavior  types  are  given.  For  symmetry-breaking  beam,  an  asymmetric
profile  of  the beam  is evolving  from  the  symmetry  Gaussian,  which  can be  termed  as  a kind of dynamical
symmetry  breaking  (DSB).  The  influences  on  the  appearance  of  the  symmetry  breaking  point  are  studied
by  varying  input  parameters  of the  Gaussian.  The  results  of this  work  are  both  suitable  in  nonlinear  optics
and  Bose-Einstein  condensate  (BEC).

© 2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The periodical modulations of linear refractive index and the
nonlinear refractive index can form a nonlinear photonic crystal,
where the former modulation forms the linear lattice (LL), and the
latter forms the nonlinear lattice (NL). Combined actions of LL and
NL to the propagating waves is an interesting topic and attracts
many concerns [1,2]. The evolution of wave inside these crystals
can be described by the nonlinear schrödinger equation under the
paraxial approximation. The LL plays the role of linear potential in
the equation, while the NL plays the role of a pseudopotential [3,4].

In optics, an optical denser medium (alias larger linear refrac-
tive index) always own a larger nonlinear refractive index, while an
optical thicker medium always own a smaller nonlinear refractive
index. Under this circumstance, the modulations of LL and NL are
in-phase coincidence. Recently, another kind of medium, in which
LL and NL are �-out-phase juxtaposed, is reported existence theo-
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retically and experimentally in some special types of optical media
[5–12]. Because the maximums of the linear refractive index are
coincided with the minimums of the nonlinear refractive index,
these media, which is named as inverted nonlinear photonic crys-
tals (INPC), will exhibit competition between the LL and NL. As a
result, the interplay between the LL and NL in the INPC shows abun-
dant power-dependent features. In the low-power region, the LL
plays an essential role in dynamics of the wave propagation. With
the power increasing, the influence from the NL gradually becomes
more and more important. Finally, if the power of the wave is large
enough (beyond some thresholds), the NL takes the place of the LL
to play the dominating role. For the INPC with cubic nonlinearity, it
is reported that solitons undergo double symmetry breaking as the
power is increasing [7,38], while for the saturable nonlinearity, the
soliton can switch between the linear and nonlinear channel with
the power’s increasing [12].

In this work, we study the propagation of a Gaussian beam in
one-dimensional INPC with a Kerr self-focusing nonlinearity (see
Fig. 1). The INPC is assumed to be fabricated by means of periodi-
cally doping of Pr3+ ions (active material) into YSO crystals (passive
background) [13,14,16], which is shown in Fig. 1. We  consider
the dopants have an N-type near-resonant four-level energy level
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Fig. 1. The INPC is fabricated by means of periodically doping of Pr3+ ions into YSO
crystals, the energy structure of the active ions are N-type energy system. D is the
period of the lattice, d1 and d2 are the width of the linear and nonlinear stripe,
respectively. N(x) is the density distribution of the active ions.

structure and are activated by electromagnetically induced trans-
parency (EIT) [14]. By appropriately selecting the detuning of the
optical fields, the system can feature �-out-of phase modulation
between LL and NL, which is a kind of virtual lattice to the probe
wave. The evolution of the probe wave in this virtual crystal can
be described by the one-dimensional nonlinear schrödinger equa-
tion. Formation of symmetry and asymmetry solitons in such kind
of medium were studied in literatures, but the dynamical evolu-
tion of Gaussian beams inside such a system is still absent. In the
following, we will present our study to the propagation behavior of
the Gaussian in this system. And our paper is organized as follows.
A brief presentation of INPC by means of EIT is introduced in Sec-
tion 2. The propagation dynamic of the Gaussian is studied in detail
in Section 3. And a conclusion is given in Section 4.

2. The model

We  consider the N-type near-resonant four-level ions as the
active dopant. The scheme of the energy levels is shown in Fig. 1,
in which |1〉 and |2〉 are the ground and metastable state, respec-
tively. These two states’ wave functions have the same parity,
which is opposite to that of states |3〉 and |4〉. A weak probe wave
Ep with Rabi frequency �p =℘ 31Ep/�  is assumed to act on transi-
tion |1〉 → |3〉,with single-photon detuning �1. Here ℘31 (which
is assumed to be real) is the matrix element of the dipole tran-
sition between |1〉 and |3〉. Further, the atomic transition |2〉 → |3〉
with detuning �c = �1 is driven by a traveling-wave field with
Rabi frequency �c, hence the two-photon detuning is given by
ı = �1 − �c ≡ 0. As another ingredient of the EIT scheme, the
atomic transition |2〉 → |4〉 with detuning �2 is induced by another
traveling-wave with Rabi frequency �s. The decay rate for level |n〉
is �n. For convenience, we neglect �1 and �2, and set �3 ≈ �4 ≡ � .
Assuming that the sample is under a very low temperature and all
the ions are populated in the ground state, we can let �1, �2 � � ,
�C, so the absorption from the atoms can be safely neglected. At
the same time, because of the low temperature environment, the
inhomogeneous broadening contributed by the crystal-field effect
can be neglected as well. Under these conditions, the steady-state
solutions of the related matrix elements between |1〉 and |3〉 can be
obtained as [15–18]

�31 ≈ |�s|2
2�2|�c |2

�p − |�p|2
2�1|�c |2

�p. (1)

The first term in the right side of Eq. (1) comes from the giant
Kerr effect of EIT [19], while the second term comes from the self-
enhanced Kerr effect of EIT [20]. The polarization of the ions is
given as P(x) = 2N(x)℘31�31 [21]. The (1 + 1)-dimensional parax-
ial steady-state propagation equation of EP in the slowly varying
envelopes then reads as

2ikP
∂
∂z

EP = − ∂2

∂x2
EP − k2

P

	0
P(x), (2)

where kP = 2�/
p is the wave number of EP. After selecting
�2 = �1 = − � < 0, substitutes �31 with Eq. (1) into Eq. (2), we get a
scaled nonlinear schrödinger equation (NLSE):

i
∂

∂z′ U = −1
2

∂2

∂x′2 U + V(x′)(1 − |U|2)U, (3)

where z′ = zkP, x′ = xkP, U = �P/�S and

V(x′) = N(x′)|℘31|2
2	0��

|�S |2
|�C |2 . (4)

From Eq. (3), the virtual LL and NL potential, which are cre-
ated by �C, are � out-of-phase, and the medium can be termed
as an INPC. In the following, coefficients are chosen as fol-
lows: the density of active atoms inside the waveguides is
N0 = 1.0 × 1018 cm3 (which corresponds to the dopant concen-
tration 0.1%), ℘31 = 1.18 × 10−32 C m,  and � = 30 kHz, the probe
wavelength being 605 nm [21], and the detuning ı = 100� , which
results in N0| ℘ 31|2/2	0 �  � ≈ 1/4 [cf. Eq. (4)].

3. Propagation behavior of a Gaussian

As discussed above, we  can rewrite the scaled 1D NLSE Eq. (3)
into

iuz = −1
2

uxx + V(x)(1 − |u|2)u, (5)

where V(x) = V0R(x). Here R(x) is a normalized Kronig-Penney
potential which has the height fixed at 1 [22–24]. V0 is the modula-
tion depth of the potential. The width of potential well and potential
barrier are set to be d1 and d2, respectively. The total power of the
field is

P =
∫ ∞

−∞
|u|2dx. (6)

We choose the input of the field (alias the initial condition) as a
Gaussian with u0(x) = A exp(− x2/W2), which is centered at the lin-
ear channel (or stripe) and can be identified by its total power P and
the width W.

The study of the evolution of the Gaussian is carried out by
means of the split-step Fourier transform algorithm. In the sim-
ulation, we fix d1 = d2 = 4 and V0 = 0.04, which corresponds to
|�S|2/|�C|2 = 0.16 [cf. Eq. (4)]. The numerical results show that there
are four types of propagation behavior by given different values
of P and W.  They are collapse beam, breather beam, soliton and
symmetry breaking beam, which are displayed in panel (a)–(d) of
Fig. 2, respectively. In Fig. 2(a), a small total power leads to a low
light intensity so that the self-defocusing nonlinearity is not enough
to compensate the diffraction, and the beam collapses. When the
power increases, the effect of nonlinearity becomes stronger. But
before this nonlinearity can completely support a self-localization
of the beam, a breather beam is generated [see in Fig. 2(b)], which
is formed by incompletely self-localization. By further increasing
the power, a soliton is created [see in Fig. 2(c)] as a complete
self-localized mode. For these three types, even with a increase
nonlinearity, the LL still dominates in the interplay of LL and NL so
that the beam still locates at the center of the linear channel. How-
ever, if the power keeps increasing to a threshold value, the NL will
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