Contents lists available at ScienceDirect

Optik

journal homepage: www.elsevier.de/ijleo

Photoluminescence properties and effects of dopant concentration in Bi₂ZnB₂O₇:Tb³⁺ phosphor

Ertuğrul Erdoğmuş^{a,*}, Esra Korkmaz^b

^a Bartın University, Faculty of Engineering, Department of Environmental Engineering, 74100 Bartın, Turkey
^b Bozok University, Faculty of Science and Arts, Department of Chemistry, 66900 Yozgat, Turkey

ARTICLE INFO

Article history: Received 24 July 2013 Accepted 18 January 2014

Keywords: Phosphors Photoluminescence Oxyborate Bi₂ZnB₂O₇:Tb³⁺

ABSTRACT

A novel green phosphor, Tb³⁺ doped Bi₂ZnB₂O₇ was synthesized by conventional solid state reaction method. The phase of synthesized materials was determined using the XRD, DTA/TG and FTIR. The photoluminescence characteristics were investigated using spectrofluorometer at room temperature. Bi₂ZnB₂O₇:Tb³⁺ phosphors excited by 270 nm and 485 nm wavelengths. The emission spectra were composed of three bands, in which the dominated emission of green luminescence Bi₂ZnB₂O₇:Tb³⁺ attributed to the transition ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ is centered at 546 nm. The dependence of the emission intensity on the Tb³⁺ concentration for the Bi_{2-x}Tb_xZnB₂O₇ (0.01 $\leq x \leq 0.15$) was studied and observed that the optimum concentration of Tb³⁺ in phosphor was 13 mol% for the highest emission intensity at 546 nm.

© 2014 Elsevier GmbH. All rights reserved.

1. Introduction

In recent years, the phosphor has attracted increasing attention because of its applications to solid-state lighting, display devices, detector systems and luminous paint with long persistent phosphorescence. A phosphor is generally composed of a transparent microcrystalline host and a luminescence activator formed by impurity metallic atoms intentionally incorporated. In the case of metallic impurities, a large number of rare-earth ions have been used as the luminescence activators of phosphors, especially trivalent rare-earth ions that generally exhibit stable emission due to the f–f electron transition [1]. Trivalent Tb ions have been expected as one of the promising species that provide optical devices in blue and green color regions and many investigations have been conducted in various compounds [2–6].

Borates have been receiving more and more attention due to their interesting physical properties and applications, such as nonlinear optical (NLO), luminescent, magnetic, Li-ion battery, high laser damage tolerance, and high optical quality. A variety of BO atomic groups are considered to be a dominant for the physical properties, in particular the optical properties, of borates. Among the researches on these properties in borates, the discovery and synthesis of optical materials are the most intensively made [7-12].

http://dx.doi.org/10.1016/j.ijleo.2014.03.001 0030-4026/© 2014 Elsevier GmbH. All rights reserved. In this paper, Bi₂ZnB₂O₇:Tb³⁺ phosphors were prepared by conventional solid state reaction method. The phase of synthesized materials was determined using the XRD, DTA/TG and FTIR. After synthesis and characterization of the phosphors, the photoluminescence properties of the synthesized phosphors were studied using a spectrofluorometer at room temperature. Also, the dependence of the emission intensity on the Tb³⁺ concentration for the Bi_{2-x}Tb_xZnB₂O₇ (0.01 $\leq x \leq 0.15$) was studied in detail.

2. Experimental

A series of Tb³⁺ doped Bi₂ZnB₂O₇ phosphors were obtained by solid state reaction in air. The reactants including Bi₂O₃ (99.00%), H₃BO₃ (99.80%), ZnO (99.99%) and Tb(NO₃)₃.6H₂O (99.99%) were weighted in the appropriate stoichiometric ratio. The chemical equation can be expressed as follows:

 $Bi_2O_3 + ZnO + 2H_3BO_3 + xTb \rightarrow Bi_{2-x}Tb_xZnB_2O_7 + 3H_2O_7$

The chemicals weighted ground well in agate mortar at room temperature and later it was collected into an alumina crucible for its appropriate heating. The powder mixtures are firstly calcined at 450 °C during 4 h. After grinding and homogenization of preannealed mixtures were heat treated at 600 °C for 40 h.

A DTA/TG combined system (PERKIN ELMER Diamond, USA) was used to determine the reaction conditions in the temperature range of 50–1000 $^{\circ}$ C under an inert N₂ atmosphere with the heating rate of 10 $^{\circ}$ C/min.

^{*} Corresponding author. Tel.: +90 0378 223 54 11; fax: +90 3782235258. *E-mail address*: ertugrulerdogmus67@gmail.com (E. Erdoğmuş).

Fig. 1. TG/DTA plot of the stoichiometric mixture of $Bi_2O_3,\,H_3BO_3$ and ZnO powders heated at the rate of 10 $^\circ C/min.$

Structural characterization was analyzed by X-ray diffraction (XRD; Bruker AXS D8) spectra with a CuK α line of 1.5406 Å.

The Fourier transform infrared spectrum between 500 and $1500 \,\mathrm{cm}^{-1}$ were measured at room temperature with a Perkin Elmer Spectrum 400 FTIR spectrometer.

All the luminescence characteristics of these phosphors were investigated at room temperature with a Scinco FluoroMate FS-2 spectrofluorometer equipped with a 150 W Xe-arc lamp.

3. Results and discussion

3.1. Thermogravimetry (DTA/TG) analysis

Typical DTA and TG plot for the stoichiometric powder mixture of Bi₂O₃, H₃BO₃ and ZnO heated at 10 °C/min is shown in Fig. 1. The thermograms showed an endothermic peak corresponding to melting of H₃BO₃ at 129 °C. Subsequently, another small endothermic peak appeared at 165 °C, which indicated the dissociation of H₃BO₃ to B₂O₃ and H₂O. This was confirmed from the DTA of boric acid and the thermodynamic data. The weight of the sample decreased drastically just after the dissociation of boric acid. The thermograms revealed a small endothermic peak at 692 °C due to the melting of Bi₂ZnB₂O₇. This means that the decomposition is almost complete and the crystallization of the Bi₂ZnB₂O₇ occurs at 600 °C.

3.2. X-ray powder diffraction analysis

The XRD patterns of phosphors are presented in Fig. 2, which is in agreement with the XRD data of Bi₂ZnB₂O₇ in Ref. [13]. All phosphors crystallizes in the orthorhombic system having a space group Pba2 and with the lattice parameters of a = 10.823, b = 11.016, c = 4.8844Å and Z = 4. Bi₂ZnB₂O₇, Bi₂ZnB₂O₇:3%Tb³⁺, Bi₂ZnB₂O₇:7%Tb³⁺, Bi₂ZnB₂O₇:11%Tb³⁺ and Bi₂ZnB₂O₇:13%Tb³⁺ were prepared in the same condition and second phase as well

Fig. 2. XRD pattern obtained for Bi₂ZnB₂O₇ prepared by a solid state synthesis.

Fig. 3. Infrared spectrum of Bi₂ZnB₂O₇ at room temperature.

as obvious shifting of the diffraction peaks were not observed as Tb^{3+} doping concentration increasing, which means that when Tb^{3+} were introduced into the lattice, the crystal structure does not change largely. According to the ionic radius, the Tb^{3+} ions $(Tb^{3+} = 92 \text{ pm})$ are expected to occupy the Bi^{3+} ion $(Bi^{3+} = 103 \text{ pm})$ sites in the $Bi_2ZnB_2O_7$ host lattice, and no Tb^{3+} ions are expected to occupy the Zn^{2+} ($Zn^{2+} = 74 \text{ pm}$) or B^{3+} ($B^{3+} = 23 \text{ pm}$) sites.

3.3. Infrared spectrum analysis

The FTIR spectrum of the product is shown in Fig. 3. For an isolated, triangular BO₃ group, the vibrations are in the region $v_3 = 1100 - 1400 \text{ cm}^{-1}$ (asymmetric stretch of B–O), $v_1 = 900 - 1000 \text{ cm}^{-1}$ (symmetric stretch of B–O), $v_2 = 700 - 900 \text{ cm}^{-1}$ (out-of-plane bend), and v_4 : 450–650 cm⁻¹ (in-plane bend) [14,15]. The absorption band at 500 cm⁻¹ is the stretching mode of ZnO [16]. It is clearly shown that the crystal system of Bi₂ZnB₂O₇ (Bi₂ZnB₂O₇) has mainly had basic structural units of BO₃^{3–}.

3.4. Photoluminescence properties

The excitation spectra of undoped-Bi₂ZnB₂O₇ and Bi₂ZnB₂O₇:13% Tb³⁺ phosphor, which were obtained by monitoring the green emission at 546 nm, are shown in Fig. 4. The excitation spectrum show a broad band centered at about 270 nm, which is attributed to the $4f^8 \rightarrow 4f^75d^1$ (f \rightarrow d) transition of Tb³⁺. In the longer wavelength region (300–400 nm), few weak excitation bands are observed and are attributed to the f–f transitions of Tb³⁺. The band at 485 nm (⁷F₆ \rightarrow ⁵D₄) has the maximum intensity among all the excitation bands [17].

The emission spectra of $Bi_2ZnB_2O_7$:Tb³⁺ excited by 270 nm and 485 nm at room temperature and electronic transitions is similar to the emissions. Fig. 5 shows emission spectra (within the range of 500–700 nm) of 13 mol% Tb³⁺:Bi_2ZnB_2O_7 phosphor. The phosphors show emission bands ranging from 500 to 650 nm, originating from one excited states of Tb³⁺ transitions from the

Fig. 4. Excitation spectra of undoped- $Bi_2ZnB_2O_7$ and $13\,mol\%\,Tb^{3+}:Bi_2ZnB_2O_7$ phosphor.

Download English Version:

https://daneshyari.com/en/article/849084

Download Persian Version:

https://daneshyari.com/article/849084

Daneshyari.com