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A  numerical  study  of femtosecond  pulse propagation  and  switching  in  a  dual-core  nonlinear  direc-
tional  coupler  with  the  consideration  of  third  order  dispersion  and  self-steepening  effects  is  reported.
The  Split  Step  Fourier  Method  (SSFM)  is  used  to investigate  the  switching  characteristics  of  nonlinear
directional  couplers.  It is observed  that  the energy  transfer  from  core  to core  is not  affected  by chang-
ing  the  input  pulse  shapes  except  super-Gaussian.  While  the  normalized  coupling co-efficient  and  the
input  peak  power  dominate  the  coupling  characteristics,  the  effects of  third  order  dispersion  (TOD)  and
self-steepening  (SS)  are  also  reported.
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1. Introduction

Fiber couplers or nonlinear directional couplers (NLDC) have
been receiving much attention for the past three decades, after
the innovative theoretical suggestion of Jensen [1], because of its
potential applications to all-optical switching and logic operations
for use in ultra-high speed data processing and ultrafast communi-
cation systems [2–5]. Jensen and Maier [6] depicted the application
of NLDC for all-optical switching by varying the input power of a
continuous signal. The usage of the continuous signal resulted in
the pulse breakup, distortion and inefficient switching. The advan-
tage of soliton pulses for all-optical switching has been explained by
Doran and Wood [7] in nonlinear interferometer. Later, Trillo et al.
[8] extended the application of soliton pulses in NLDC and pointed
out that the pulse break-up can be evaded when the soliton pulses
are used as inputs, due to its particle-like behaviour. Besides, it is
revealed [9] that fundamental soliton is the most suitable input
among second order soliton and quasi solitons. Presently, the soli-
ton pulses are applied in different optical fiber switching devices
such as fiber Bragg gratings [10,11], fiber loop mirrors [12], pho-
tonic crystal fiber couplers [13], nonlinear birefringent fibers [14]
and many other nonlinear fiber devices [15–17].

Of particular interest is the study of combined influence of
higher order perturbative effects. If the input pulse width is too
small(<ps), we  have to include the higher order linear and nonlinear

∗ Corresponding author. Tel.: +91 9445160544.
E-mail address: uthayk@yahoo.com (A. Uthayakumar).

terms in Nonlinear Schrödinger Equation (NLSE) which describes
the soliton propagation in optical fibers. Here the pulse propaga-
tion in NLDC has been explained by two linearly coupled NLSEs
(CNLSE) based on the coupled mode theory. Previously the effect
of third order dispersion in nonlinear directional couplers has been
carried out in Refs. [18,19] and the influence of Stimulated Raman
Scattering (SRS) has been studied in Ref. [20]. The combined effects
of SRS and TOD have been described in Ref. [21]. Recently the com-
bined effects of TOD and SS have been addressed in optical fiber
[22] and we extend these effects to NLDC. As the larger pulse width
may  constrain the ultrafast communication, we have taken fem-
tosecond pulses for this work. In this investigation, we study the
combined effects of TOD and SS on ultra-short pulse interaction
and switching in NLDC.

2. Theoretical framework-coupled nonlinear Schrödinger
equations

Since nonlinear directional couplers are having two identical
cores that are closely spaced and parallel to each other, the ultra-
short pulses inside the NLDC can be expressed mathematically by
CHNLSE [23],
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where A1 and A2 represent the slowly varying envelopes associated
with core 1 and core 2 respectively and the nonlinear parameter � is
defined as � = 2�n2/�Aeff, where n2 is the nonlinear refractive index
and � is the optical wavelength. Aeff is the effective core area,ˇ2 and
ˇ3 are the second and third order dispersion co-efficients respec-
tively. The term containing 1/ω0 is related to self-steepening, and
that of TR is responsible for Raman scattering and C0, C1 are the lin-
ear coupling and intermodal co-efficients respectively. Eqs. (1) and
(2) are transferred using standard soliton units [23],
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where LD = T2
0 /|ˇ2| is the dispersion length and T0 is a measure of

the input pulse width, P0 is the input peak power. Then Eqs. (1) and
(2) can be written in the following normalized form,
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To remove the order of the soliton N in the above equations,
we again put as, u1 = NU1 and u2 = NU2, where N2 = LD/LNL, and
LNL = 1/�P0. The terms in the above equations can be written as,
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where ı, s, �R, 	0, 	1 are the third order dispersion, self-steepening,
Raman, normalized linear coupling and normalized intermodal
coefficients respectively. ω0 is the center frequency and it is defined
as, ω0 = 2�c/�, where c is the speed of light in free space. As all three
parameters ı, s and �R differ inversely with the pulse width, they
are negligible for T0 > 1ps, however they become appreciable for
femtosecond pulses. As we are particularly interested to study the
effects of third order dispersion and self-steepening, we  neglect the
Raman term by putting �R = 0 in the above equations as,
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3. Numerical results and discussion

In general, the above Eqs. (7) and (8) cannot be solved analyti-
cally and so a numerical method is needed to solve them. The most

widely used numerical method solving NLSE is the Split Step Fourier
Method (SSFM) due to its simplicity, good accuracy and relatively
modest computing cost. Here the linear and nonlinear parts are
separated and we use the SSFM for the linear section and the dif-
ference scheme [24] for the nonlinear section. In this simulation, we
have carried out a numerical grid consisting of 1024 points spaced
equally from � = −10 to � = 10. The initial pulses launched in core 1
and core 2 are given as,

u1 (0, �) = Asech(�), u2(0,  �) = 0 (9)

Now we  define the energy transfer co-efficient of ith core as (i = 1,
2) [25]
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Converting the soliton units back to the real units of conven-
tional fiber as, ˇ2 =−20 ps2/km, ˇ3 = 0.108 ps3/km, Aeff = 55 nm,
n2 = 2.35x10−20 m2/W and the wavelength � = 1.55� m,  we  have
calculated the TOD and SS co-efficient values. In this work, we
have studied the switching characteristics at the half-beat coupling
length. The coupling length of the half-beat coupler is defined as
[26], LC = �/2	0.

3.1. Combined effects of TOD and SS, varying the normalized
coupling co-efficient

In this section, we study the combined influence of TOD and SS
by varying the normalized coupling co-efficient. Fig. 1 shows the
switching characteristic curves with different values of 	0.

In all the figures, the dashed lines indicate the transmission
curves of core 1 and core 2 with the values of ı = 0, s = 0, i.e., in the
absence of higher order effects and the solid lines show the trans-
mission curves of core 1 and core 2 with the pulse width T0 = 10fs
and ı = 0.09, s = 0.0822. Fig. 1(a) depicts the switching characteris-
tics with the conditions of 	0 = 0.25, LC = 2�. From the figure, one can
observe that the threshold power for both dashed line and solid line
curves is almost same and lies at Pth = 1.3 and after the input peak
power P0 > 1.37, the switching characteristics have been slightly
decreased with the increasing input peak power due to TOD and
SS effects. Fig. 1(b) gives the switching characteristic curves with
the conditions of 	0 = 0.5, LC = �. Looking at the figure, it is easily
noticed that there are no effects of TOD and SS until the input peak
power P0 ≤ 1.742. The switching threshold power for dashed line
curves is Pth = 2.05 and Pth = 2.17 for solid line curves respectively.
We can clearly observe that the switching characteristics have been
decreased further compared with Fig. 1a with the increase in the
input peak power. To investigate further, we  have plotted Fig. 1(c)
and (d) with the conditions of 	0 = 0.75, LC = 2�/3 and 	0 = 1, LC = �/2
respectively. In the figures, the effects of TOD and SS do not take
place until the input peak powers P0 ≤ 2.121, P0 ≤ 2.663 accord-
ingly. From Fig. 1(c), we observe the switching threshold power for
dashed line curves is Pth = 2.82 and Pth = 3.16 for solid line curves
respectively. Likewise from Fig. 1(d), the threshold powers lie at
Pth = 3.6 for dashed line curves and Pth = 4.23 for solid line curves.
In both figures, We  can clearly notice that the switching charac-
teristics have been decreased furthermore compared with former
figures with the increase in the input peak power and hence we
come to know from all the figures that TOD and SS effects tend to a
very serious decrease in the transmission curves by increasing the
normalized coupling co-efficient, Even though they smoothen the
oscillating curves at high input powers.
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