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a  b  s  t  r  a  c  t

A  resonator  with  a right-angle  conical  reflector  has  been  proposed  to  produce  high-power  CO2 laser
beams.  To  analyze  eigenfields  of the  right-angle  conical  reflector  resonator,  this  paper  adopts  and  demon-
strates  the transfer  matrix  method.  In  this  paper,  the  mode-fields  and  corresponding  losses  are  described
as eigenvectors  and  eigenvalues  of  a  transfer  matrix  according  to the  self-reproducing  principle  of laser
field.  By  solving  the  transfer  matrix  for  eigenvectors  and  eigenvalues,  we  obtain  field  distributions  and
losses  of  the  dominant  eigenmodes.  The  calculation  results  reveal  that  the right-angle  conical  reflector
resonator  could  be  used  for a high-power  CO2 laser  to achieve  low-order  modes.  However,  the  beam
quality  is reduced  due to the  residual  blind-hole,  which  is  in  accord  with  the  experimental  result.

©  2014  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Based on the resonators with a retroreflecting roof mirror and a
retroreflecting corner cube mirror [1–3], a right-angle cone mirror
cavity for a TEA CO2 laser has been proposed and experimentally
studied [4,5], it is clear from the experimental results that the
right-angle cone mirror cavity improves the capability against mis-
alignment and the distribution of output beams in near field are
uniform although the pulse output power of the TEA CO2 laser is
similar to that of the laser by use of a plano-concave resonator. As a
consequence, in this paper, to analyze eigenfields of the resonator
with a 90◦ conical reflector accurately and conveniently, a transfer
matrix algorithm which combines the self-reproducing principle of
optical field with the diffraction integral in the form of ray matrix
are adopted.

As has been well known, the Huygens–Fresnel diffraction inte-
gral in the form of ray matrix can be applied in the optical beam
propagation and transformation of an ABCD optics system [6]. Con-
sequently, in this paper diffraction integral equations in the form
of ray matrices are transformed into finite-sum matrix equations
[7,8]. Following the laser self-reproducing condition, i.e., a state
is reached in which the relative field distribution does not vary
from transit to transit and the amplitude of the field decays at an
exponential rate, we describe mode-fields and their losses of the
90◦ conical reflector resonator as eigenvectors and eigenvalues of
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a transfer matrix. Finally, field distributions and losses of the 90◦

conical reflector resonator are obtained by use of the matrix numer-
ation. As we will demonstrate, the whole analysis method proposed
by this paper can be adopted in estimating the modes of output
beams.

The rest of this paper is organized as follows: Section 2 describes
first the configuration of a 90◦ conical reflector resonator and
writes out the corresponding one-way diffraction integral equa-
tions. In Section 3, according to the laser self-producing condition,
the Huygens–Fresnel diffraction integral equations in the form of
ray matrices are converted into the matrix equations. Section 4 cal-
culates and analyzes eigenfields and their losses of the 90◦ conical
reflector resonator, while our conclusions are drawn in Section 5.

2. The configuration of the resonator and its integral
equations

As described above, a resonator with a 90◦ conical reflector has
been proposed to output high-power CO2 laser beams, not needing
complex configuration. Here, we cite the configuration adopted by
Hongqi Li and Zuhai Cheng [4], as shown in Fig. 1.

The resonator consists of a 90◦ conical reflector M1, and a flat
mirror M2, which is placed at a distance L from the bottom of the
90◦ conical reflector and serves as the output coupler. The radii of
both the axicon M1 and the output coupler M2 are a. The dashed
ellipse represents the blind-hole, namely, the top of the conical
reflector is irreflexible.

The diffraction integral derived by Baues and Collins ignores
diffraction losses induced by diffraction-limited optical elements
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Fig. 1. Scheme of the right-angle conical reflector resonator.

inside an optics system. Accordingly, in order to calculate accu-
rately eigenmodes and their losses of the resonator, the round-trip
laser transmission should be disintegrated into two one-way trans-
missions; otherwise the diffraction loss caused by one mirror is
ignored if the round-trip ray matrix is directly used.

As denoted in Fig. 1, after reflected by M2 and propagating from
M2 to M1, the one-way ray can be described by the following matrix:

T1 =
[

A1 B1

C1 D1

]
=

[
1 0

0 1

] [
1 L

0 1

]
=

[
1 L

0 1

]
. (1)

Similarly, the ray matrix for one-way ray reflected by M1 and
propagating from M1 to M2 is:

T2 =
[

A2 B2

C2 D2

]
=

[
1 L

01 1

] [
−1 −2d

0 −1

]
=

[
−1 −2d − L

0 −1

]
. (2)

As pointed by Collins, if an incident optical field propagates
through an axisymmetric optics system described by an ABCD ray
matrix, the Huygens–Fresnel diffraction integral can be expressed
as [6].

E2 (r2, ϕ2) = − ik exp (ikL)
2�B

∫ ∫
S1

E1 (r1, ϕ1)

exp
{

ik

2B

[
Ar2

1 + Dr2
2 − 2r1r2 cos (ϕ1 − ϕ2)

]}
r1dr1dϕ1, (3)

where r1 and ϕ1 are the cylindrical coordinates for the incident
plane, E1(r1, ϕ1) is the incident optical field, S1 represents the
incident plane, r2 and ϕ2 are the cylindrical coordinates for the
diffraction plane, E2(r2, ϕ2) is the diffraction optical field, � is the
light wavelength, k is termed the wave number given by k = 2�/�, i
represents the imaginary unit

√−1, and A, B, and D are the elements
of the ray matrix.

Given an original field E2(r2, ϕ2) just before the plane mirror M2,
from Eqs. (1) and (3), the diffracted field across the interface 1 is:

E1 (r1, ϕ1) = − ik exp (ikL)
2�B1

∫ ∫
S2

E2 (r2, ϕ2)

exp
{

ik

2B1

[
A1r2

2 + D1r2
1 − 2r1r2 cos (ϕ1 − ϕ2)

]}
r2dr2dϕ2. (4)

By using Eqs. (2) and (3), the diffraction field across the interface
2 can be written as

E2
′ (r2, ϕ2) = − ik exp (ikL)

2�B2

∫ ∫
S1

E1 (r1, ϕ1)

exp
{

ik

2B2

[
A2r2

1 + D2r2
2 − 2r1r2 cos (ϕ1 − ϕ2)

]}
r1dr1dϕ1. (5)

Making a separation of variables for light fields along r and ϕ
direction, namely:

E1 (r1, ϕ1) = E1 (r1) exp(inϕ1), E2 (r2, ϕ2) = E2(r2) exp(inϕ2),

E2
′ (r2, ϕ2) = E2

′(r2) exp(inϕ2), (6)

where n is an integer, and substituting Eq. (6) into Eqs. (4) and (5),
respectively, we  write the diffraction equations along r direction as

E1 (r1) = (−i)n+1k exp (ikL)
B1

a∫
0

E2 (r2) Jn

(
kr1r2

B1

)

exp
[

ik

2B1

(
A1r2

2 + D1r2
1

)]
r2dr2, (7)

E2
′ (r2) = (−i)n+1k exp (ikL)

B2

a∫
0

E1 (r1) Jn

(
kr1r2

B2

)

exp
[

ik

2B2

(
A2r2

1 + D2r2
2

)]
r1dr1, (8)

where Jn is the nth-order Bessel function.
As have done above, the corresponding diffraction integral equa-

tions for the 90◦ conical reflector resonator have been obtained
which are in relation to the ray matrices given by Eqs. (1) and
(2). Evidently, self-reproducing eigenmodes cannot be analytically
derived from Eqs. (7) and (8). Hence, in the following section, we
will induce the matrix equations of the 90◦ conical reflector res-
onator.

3. The matrix equations for eigenmodes of the 90◦ conical
reflector resonator

From the above discussion, it is readily distinct that eigen-
fields of the resonator with a 90◦ conical reflector are determined
by diffraction integral equations along r direction. Therefore, the
eigenmode matrix equation of the resonator with a 90◦ conical
reflector can be derived according to the laser self-reproducing
condition as long as Eqs. (7) and (8) are converted into matrix
equations.

Dividing two  mirrors M1 and M2 into M units (circular rings)
which have equivalent lengths along r direction, respectively, and
using Eqs. (7) and (8), we  acquire discrete distributions of the
diffracted fields along r direction as follows:

E1(r1)m =
M∑

n=1

XmnE2(r2)n, (9)

E2
′(r2)m =

M∑
n=1

YmnE1(r1)n, (10)

where the elements of one-way matrices X and Y are given by

Xmn = (−i)nn+1kna2 exp (ikL)
B1M2

Jnn

(
kmna2

B1M2

)

exp

[
ia2�

B1�M2

(
A1n2 + D1m2

)]
, (11)

Ymn = (−i)nn+1kna2 exp (ikL)
B2M2

Jnn

(
kmna2

B2M2

)

exp

[
ia2�

B2�M2

(
A2n2 + D2m2

)]
, (12)



Download English Version:

https://daneshyari.com/en/article/849195

Download Persian Version:

https://daneshyari.com/article/849195

Daneshyari.com

https://daneshyari.com/en/article/849195
https://daneshyari.com/article/849195
https://daneshyari.com

